
Future Generation Computer Systems () –

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Analysis of classic algorithms on highly-threaded many-core
architectures
Lin Ma a,b,∗, Roger D. Chamberlain a, Kunal Agrawal a, Chen Tian b, Ziang Hu b

a Washington University in St. Louis, St.Louis, MO, USA
b Huawei America Research Center, Santa Clara, CA, USA

h i g h l i g h t s

• Analyze effect of memory latency hiding by threads and determine the algorithm bound.
• A wide range of algorithms analyzed on a wide spectrum of architectures including both NVIDIA and AMD GPUs and XMT machines.
• Analysis is accurate compared with our and other researchers’ experimental findings.
• Predict important, non-trivial, and previously unexplained trends and artifacts in empirical data.
• Verify the TMMmodel is effective at predicting effect of changing various parameters on diversified many-core machines.

a r t i c l e i n f o

Article history:
Received 29 February 2016
Received in revised form
8 January 2017
Accepted 6 February 2017
Available online xxxx

Keywords:
Threaded Many-core Memory (TMM)
model

GPU
XMT
Algorithm analysis
Modeling
Simulation and evaluation techniques of
HPC systems

a b s t r a c t

The recently developed Threaded Many-core Memory (TMM)model provides a framework for analyzing
algorithms for highly-threaded many-core machines such as GPUs and Cray supercomputers. In
particular, it tries to capture the fact that these machines hide memory latencies via the use of a large
number of threads and large memory bandwidth. The TMM model analysis contains two components:
computational and memory complexity.

A model is only useful if it can explain and predict empirical data. In this work, we investigate the
effectiveness of the TMMmodel. Under this model, we analyze algorithms for 5 classic problems— suffix
tree/array for string matching, fast Fourier transform, merge sort, list ranking, and all-pairs shortest
paths—on a variety of GPUs. We also analyze memory access, matrix multiply and a sequence alignment
algorithmon a set of Cray XMT supercomputers, the latest NVIDIA andAMDGPUs.We compare the results
of the analysis with the experimental findings of ours and other researchers who have implemented and
measured the performance of these algorithms on a spectrum of diverse GPUs and Cray appliances. We
find that the TMMmodel is able to predict important, non-trivial, and sometimes previously unexplained
trends and artifacts in the experimental data.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Highly-threaded many-core architectures such as Graphics
Processing Units (GPUs) and Cray Extreme Multi-Threading (XMT)
supercomputers are increasingly being exploited as powerful
compute engines. For these architectures, a number of high-
performance algorithms have been developed, such as sorting [1],
hashing [2], dynamic programming [3], graph algorithms [4],
matrix multiplication [5], and other classic algorithms [6]. Many

∗ Corresponding author at: Huawei America Research Center, Santa Clara, CA,
USA.

E-mail address: lin.ma@wustl.edu (L. Ma).

performance studies have also been conducted [7–9] to understand
the performance of applications on such machines.

We are interested in the theoretical asymptotic analysis
of algorithms, since it allows us to compare the high-level
performance characteristics of algorithmswithout worrying about
low level implementation details of both the algorithm and the
particular machine. PRAM [10] is the most common model for
theoretical analysis of parallel algorithms. However, the PRAM
model ignores some important characteristics of GPU-like highly-
threaded machines. For example, PRAM assumes that all memory
accesses take constant time; this assumption is violated by the
complex memory subsystems of most modern machines and
is especially not a reasonable assumption for GPUs and XMTs.
Recently, a few models for asymptotic analysis of GPU algorithms

http://dx.doi.org/10.1016/j.future.2017.02.007
0167-739X/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2017.02.007
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:lin.ma@wustl.edu
http://dx.doi.org/10.1016/j.future.2017.02.007

2 L. Ma et al. / Future Generation Computer Systems () –

have been proposed [11,12] that do try to take important
characteristics of these machines into consideration.

In this paper, we focus on one of these models, namely, the
Threaded Multi-core Memory (TMM) model [11]. In the TMM
model, a program is analyzed in terms of both its computational
complexity and its memory complexity. Computational complex-
ity analysis is identical to the standard analysis used by parallel
algorithms, in particular, by the PRAM model. However, the TMM
model is meant to capture important characteristics of the mem-
ory subsystem of highly-threaded many-core machines, such as
GPUs. Therefore, the analysis framework for memory complexity
in the TMM model takes three important characteristics of these
machines into consideration. (1) There is a large latency for access-
ing the largest and slowest memory on the machine, namely the
global memory. (2) These machines have a large number of hard-
ware managed threads and use fast context switching between
these threads to hide this latency. (3) In addition to the fast context
switching, these machines typically have a large memory band-
width between the core and the slow memory; therefore, if the
memory accesses are regular and predictable, then many memory
operations canbe grouped into one large bandwidthmemory trans-
fer. Therefore, in this model, the memory complexity of a program
depends not only on how many memory accesses it contains, but
also on both how many threads it can use and how effectively its
memory accesses can be grouped. Typical examples of such ma-
chines include both NVIDIA and AMD/ATI GPUs and the Cray Yarc-
Data uRiKA system. We do not try to model the Intel Xeon Phi, be-
cause it has limited thread count, typically insufficient for latency
hiding. In contrast, its approach to hide memory latency is primar-
ily based on stridedmemory access patterns associatedwith vector
computation.

In the TMM model, the total running time of an algorithm
on P cores depends on both its computational complexity and
memory complexity. The computational complexity is derived in
terms of work T1—the total amount of computation, or, in other
words, its running time on 1 processor – and span T∞

1—the
amount of computation on the critical path or, in other words, the
running time on an infinite number of processors. The memory
complexity is derived using a parameter M , which is the total
number of memory transfers (either grouped or not) from slow
memory. The total running time on P cores is then derived
using both computational and memory complexity, as well as
machine parameters such as the latency to slowmemory, memory
bandwidth to slow memory, and number of available hardware
threads.

Asymptotic models are meant to capture important character-
istics of the machine while ignoring low-level details; however, a
model is only useful if it can predict and explain empirical data.
Like all asymptotic models, the TMM model makes a few differ-
ent categories of predictions: (1) For a given algorithm, it predicts
the impact of increasing problem sizes on performance. (2) When
we have multiple algorithms for the same problem, asymptotic
models can help us compare them and understand relative per-
formance at a high level. However, unlike the standard RAM or
PRAMmodels, these predictionsmay depend on somemachine pa-
rameters, such as the relationship between memory latency, the
fast memory size, and the number of allowable threads on the ma-
chine.2 In addition, unlike the PRAM model, the TMM model also
allows us consider the effects of changing the parameters of the

1 Also called depth, time, or critical-path length in the literature. We reserve
the term ‘‘time’’ for the running time on P processors, not an infinite number of
processors.
2 This is not very different from other models that also consider memory

subsystem, such as DAM (see Section 10).

machine itself (such as reducing memory latency or changing the
fast memory size) on the performance of an algorithm.

In this paper,we evaluate the effectiveness of the TMMmodel in
terms of its ability to predict empirical performance of algorithms.
We extend our analysis [13,14] of a number of classic algorithms
with a wider range and more in-depth investigation under the
TMM model. Specifically, we analyze suffix trees and suffix arrays
for the problem of string matching, Fast Fourier Transform (FFT),
merge sort, Wylie’s list ranking, looped memory accesses, matrix
multiplication, and sequence alignment. For all of these algorithms,
we compare the analytical conclusions derived using the TMM
model to the empirical observations of researchers who have
previously implemented these algorithms, in order to investigate
whether the TMM analysis correctly predicts the trends observed
in the empirical data, and whether it can explain previously
unexplained characteristics of the data. In addition, we also take
a second look at an all-pairs shortest paths algorithm, which was
previously analyzed in the original TMM paper [11], and perform
additional experiments on two more latest GPU architectures,
both to investigate if the TMM model applies to the newest
GPU machines and to investigate the effect of changing machine
parameters.

Our findings indicate the TMM model is effective at explaining
many kinds of empirical observations, and its analysis framework
appears to be well suited to understanding and predicting the
high-level characteristics of the performance of algorithms on
all these machines. In particular, one can compare the effect of
computational andmemory complexity on the runtime for various
parameter settings, and explain the behavior of algorithms for
varying problem sizes. In addition, the TMM model also predicts
the effect of changing the machine parameters, such as memory
latency, on the performance of algorithms. Note that the TMM
model ignores constant factors; therefore, it can only explain
high-level trends, not particular numerical values at which these
trends may occur. For all the classic algorithms considered in
this paper, the TMM analysis indicates that considering both
computational andmemory complexity is necessary to understand
the performance of algorithms on highly-threaded many-core
machines such as GPUs and XMTs.

2. Threaded many-core memory model

The TMM model [11] models highly-threaded many-core
machines as consisting of a number of core groups (called
streamingmultiprocessors on NVIDIA GPUs, compute unit on AMD
GPUs, and Threadstorm processors on Cray XMTs). Some of these
machines like GPUs contain a number of cores and a fast local on-
chip memory of size Z shared within a core group. Computation
and access to fastmemory takes unit time in the TMMmodel. Some
machines like XMTs have only one core per Threadstorm processor
as a core group.

A large slow global memory is shared by all the core groups and
accessing the slow memory takes L time steps (L is the memory
latency). Data is transferred from slow to fast memory in chunks
of maximum size C , also called the chunk size or memory access
width; this represents the large bandwidth between slow and fast
memory.3 These machines support a large number of hardware
threads, much larger than the total number of cores P , and these
threads are used to hide the memory latency. The hardware limit
on the number of threads per core is represented by X; the total
number of threads supported on themachine is therefore bounded
by XP .

3 The chunk can either be a cache line of hardware managed caches or an
explicitly-managed combined read from multiple threads.

Download English Version:

https://daneshyari.com/en/article/6873227

Download Persian Version:

https://daneshyari.com/article/6873227

Daneshyari.com

https://daneshyari.com/en/article/6873227
https://daneshyari.com/article/6873227
https://daneshyari.com

