
Future Generation Computer Systems () –

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Tuning linear algebra for energy efficiency on multicore machines by
adapting the ATLAS library
Thomas Jakobs, Jens Lang ∗, Gudula Rünger, Paul Stöcker
Department of Computer Science, Technische Universität Chemnitz, 09107 Chemnitz, Germany

h i g h l i g h t s

• We present a version of ATLAS that minimises energy instead of time.
• When ATLAS is tuned for minimal energy consumption, 10% of energy can be saved.
• Some tuning parameters show differences when optimised for time and for energy.
• Being compute-bound, DGEMM profits most from the tuning for energy.

a r t i c l e i n f o

Article history:
Received 29 February 2016
Received in revised form
21 January 2017
Accepted 7 March 2017
Available online xxxx

Keywords:
Energy autotuning
Energy efficiency
Power
Basic linear algebra subroutines (BLAS)
ATLAS

a b s t r a c t

While automated tuning is an established method for minimising the execution time of scientific
applications, it has rarely been used for an automated minimisation of the energy consumption. This
article presents a study on how to adapt the auto-tuned linear algebra library ATLAS to consider the
energy consumption of the execution in its tuning decision. For different tuning parameters of ATLAS,
it investigates which differences occur in the tuning results when ATLAS is tuned for a minimal execution
time or for a minimal energy consumption. The tuning parameters include the matrix size for the low-
level matrix multiplication, loop unrolling factors, crossover points for different matrix-multiplication
implementations, the minimum size for matrices to be transposed, or blocking sizes for the last-level
cache. Also, parameters for multithreaded execution, such as the number of threads and thread affinity
are investigated. The emphasis of this article is on a method proposed with which it is possible to replace
a tuning process for execution time by a tuning for energy consumption, especially in the parallel case.
ATLAS serves as a prominent example for a tuned library. Furthermore, the article draws conclusions on
how to design an energy-optimising autotuning package andhow to choose tuning parameters. The article
also discusses why the matrix-matrix multiplication has a potential for increasing the energy efficiency
while the time efficiency remains constant, whereas other routines have shown to improve their energy
efficiency by reducing the execution time.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Most simulations from the field of scientific computing can be
decomposed into subroutines froma set of commonly used numer-
ical and computational methods [1]. One of the most important
classes of such subroutines is dense linear algebra. As a standard in-
terface for dense linear algebra libraries, BLAS (Basic Linear Algebra
Subroutines) has established over the last decades [2]. Since keep-
ing pace with the constantly improving hardware is important,

∗ Corresponding author.
E-mail addresses: thomas.jakobs@cs.tu-chemnitz.de (T. Jakobs),

jens.lang@cs.tu-chemnitz.de (J. Lang), ruenger@cs.tu-chemnitz.de (G. Rünger),
stop@hrz.tu-chemnitz.de (P. Stöcker).

automated tuning or autotuning methods are widely used and
have also been used for packages implementing the BLAS inter-
face [3]. Until today, autotuning has mainly focused on minimis-
ing the execution time of an application [4]. However, energy
efficiency of scientific codes will become an important design goal
in the near future [5]. Currently, there is no autotuning package
for linear algebra available that considers energy as an optimisa-
tion goal. This article proposes amethod for creating a BLAS library
which is automatically tuned for a minimum energy consumption.

One of the most popular autotuned BLAS packages is ATLAS
(Automatically Tuned Linear Algebra Software) [3]. ATLAS inves-
tigates a large number of code variants for different BLAS opera-
tions and selects those showing the best performance, partly even
considering data characteristics. It finds the optimal values for sev-
eral tuning parameters, such as block sizes, pre-fetch distances, or

http://dx.doi.org/10.1016/j.future.2017.03.009
0167-739X/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2017.03.009
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:thomas.jakobs@cs.tu-chemnitz.de
mailto:jens.lang@cs.tu-chemnitz.de
mailto:ruenger@cs.tu-chemnitz.de
mailto:stop@hrz.tu-chemnitz.de
http://dx.doi.org/10.1016/j.future.2017.03.009

2 T. Jakobs et al. / Future Generation Computer Systems () –

performance crossover points of different implementations. The
ATLAS library, however, currently only optimises for execution
time and does not consider the energy consumption. Although
it has often been found that optimising the execution time also
reduces the energy consumption by nearly the same percentage
[6–8], this is not always true; in [7,9,10], it is shown that a devia-
tion of up to 7% is possible.

This article presents some approaches to introduce energy as an
optimisation goal into the ATLAS autotuner. The aim is to create an
autotuned BLAS library which uses as little energy as possible, for
example by favouring low-energy implementation variants over
fast variants in cases in which a conflict between the two goals of
optimising execution time or energy occurs. Thus, our approach is
a proposal to tackle the problem of a multi-objective optimisation
by enhancing the autotuning approach in ATLAS. An important
requirement for our approach is that running the adapted ATLAS
routines shall not have any side effects that may influence other
running processes or non-ATLAS threads. This prevents the use
of widely known and effective techniques, such as frequency
manipulation or clock gating [5].

The parameters that are evaluated during the autotuning pro-
cess of ATLAS for execution time are also evaluated by using energy
measurements. This enables us to point out specific differences in
the effect of e.g.matrix block sizes on timing and energy behaviour.
Someparts of this investigation have beenpresented earlier in [11],
which focused on parameters for singlethreaded execution of the
blas routines. In this article, we extend this work by including
parameters that are mainly relevant for a multithreaded execu-
tion and on a multi-objective optimisation. The additional contri-
butions of this article are given in the following. It investigates
whether using simultaneous multithreading and thread affinity
yield a higher performance in terms of time or energy for mul-
tithreaded execution. Additionally, the influence of different exe-
cution variants on cache usage boundaries is discussed. Thus, the
article presents an ATLAS variant for multithreaded execution,
which has been completely tuned for energy consumption. Hence,
this ATLAS variant should exhibit a minimum energy consumption
of all variants producible by the autotuner.

In summary, the contributions of this article are:
• the modification of the autotuning process of ATLAS with the

goal to exploit different objectives, i.e. execution time and
energy efficiency;
• a concise and thorough empirical study of the differences in

execution time and energy behaviour of the ATLAS library with
respect to several parameters, such asmatrix block size or cache
boundaries;
• a first step towards a multi-objective autotuning process

concentrating on the two optimisation goals time and energy
by picking the implementation variant with the best result for
both criteria;
• the evaluation of the autotuning process for multithreaded

execution.

The rest of this article is structured as follows: Section 2
gives a summary on the autotuning mechanism of ATLAS and
proposes methods for introducing energy awareness into the
autotuner. Section 3 investigates several tuning parameters and
their behaviour when tuned for execution time and for energy
consumption. Section 4 investigates the effect of tuning the
complete package for energy consumption. Section 5 presents
related work, and Section 6 concludes the article.

2. Autotuning in ATLAS

Autotuning is an ‘‘automatedprocess, guidedby experiments, of
selecting one from among a set of candidate program implementa-
tions to achieve some performance goal’’ [12]. Autotuning usually
consists of three steps [12]:

1. Creation of a number of candidate implementations for the
operation to be tuned;

2. Experimental evaluation of the performance of the variants;
3. Selection of the best variant for the practical execution of the

code.
As the performance of a code normally strongly depends on the
hardware on which it is executed, the autotuning procedure is, in
most cases, performed during the installation of the software on a
new hardware.

2.1. The ATLAS autotuning process

A good review of the autotuning process of ATLAS is given in [3,
13]. Fig. 1 visualises the steps of the ATLAS autotuning process,
the data transferred between the steps, and the parameters which
can be extracted from each step (arrows pointing down). The first
step of ATLAS is the detection of certain hardware parameters,
including the size of the level-1 cache, the latency of a multiply
operation, the number of floating-point registers, and the presence
of the fused multiply–add (FMA) hardware instruction. In order to
save tuning time, ATLAS provides a library of hardware parameters
for the most common architectures. If the library values are used,
the hardware detection step is omitted. Hardware detection can,
however, be enforced (by giving the parameter -Si archdef 0
to the configure script).

ATLAS uses two different methods for creating candidate
implementations. The first method is the source code adaptation
(second box in Fig. 1), which is used when different source codes
are needed for implementing the candidates. When using source
code adaptation, different algorithms for one operation may be
evaluated or, if the code is generated automatically, different
levels of loop unrolling or different loop nestings can be tested.
The incorporated search engine determines which code variants
and which parameter settings exhibit the best performance. The
parameters to be tuned include the block size NB for the blocked
matrix multiplication, the loop unrolling factors nu,mu and ku, and
a parameter indicating whether fused multiply–add is used. The
search engine hands over the parameter set to be investigated to
the code generator, which generates the source code considering
these parameters and compiles it. During the execution, the
performance of the generated routine is measured and returned
to the search engine which then, based on the result, refines the
parameter set. ATLAS offers various timers for the evaluation of the
performance, including wall clock timers and cycle-accurate CPU
timers.

The second method for creating candidate implementations is
the parametrised adaptation (third box in Fig. 1), which means that
a piece of code contains a parameter which controls its execution.
These parameters are tuned after the source code generation. The
parameters include the copy/no-copy threshold, which controls
whether thematrices are copied and rearranged inmemory before
the operation, and the CacheEdge,which optimises the cache usage
of higher-level caches.

This article will mainly (but not solely) focus on operations
of BLAS level 3, i.e. matrix-matrix operations. For level-3 kernels,
ATLAS uses a two-stage optimisation [3], which works as follows:
The high-level stage splits up the operation into smaller, block-
wise matrix-matrix multiply operations. These matrix-matrix
multiplications are processed in the low-level stage. For the low-
level stage, there exists a highly optimised kernel which performs
amatrixmultiplication of the form C ← A⊤B+βC . Allmatrices are
square matrices with their dimensions (N ,M and K) being NB. The
value for NB is chosen in a way such that the operation becomes
cache-contained, i.e. the data needed fits into the level-1 cache.
Furthermore, the article will only deal with tuning parameters
that are already present in ATLAS. New parameters, such as
the operating frequency of the CPU, are not introduced. Works
investigating dynamic voltage and frequency scaling for linear-
algebra routines are, e.g., [14,7].

Download English Version:

https://daneshyari.com/en/article/6873229

Download Persian Version:

https://daneshyari.com/article/6873229

Daneshyari.com

https://daneshyari.com/en/article/6873229
https://daneshyari.com/article/6873229
https://daneshyari.com

