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h i g h l i g h t s

• Newmaximum-dose-based and gEUD-based quadratic sub-scores are proposed.
• New sub-scores overcome the shortcoming of semi-deviation.
• New sub-scores solve the problem of vanishing gradient in feasible solution space.
• New sub-scores used in radiotherapy planning can expand the search solution space.
• By expanding the solution space, the quality of radiotherapy plan is improved.
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a b s t r a c t

Purpose: Both maximum-dose-based and generalized equivalent uniform dose (gEUD)-based quadratic
sub-scores, which penalize doses higher than the prescribed dose, exhibit the shortcomings of semi-
deviation and a vanishing gradient in the feasible solution space. To address these drawbacks, this
study proposes new sub-scores for the maximum dose criterion and the gEUD criterion. Methods: In
new sub-scores, a dosage lower than the prescribed dose is assigned a linear penalty function, and one
higher than the prescribed dose is assigned an extra quadratic penalty function. To test their efficiency,
they were incorporated into a physical model and a hybrid physical–biological model, respectively, and
were tested on a phantom TG119 and two types of clinic cases. The improved methods were compared
with their original methods and the dose-volume (DV)-based optimization method. Additionally, the
improved gEUD-based method was compared with another gEUD-based quadratic optimization method.
The gradient-based optimization algorithmwas applied to solve these large-scale optimization problems.
Results: For similar or better PTV coverage, optimization based on our proposed quadratic models is
capable of improving the OARs sparing. In practice, by using multiple DV constraints for each optimized
structures, the DV based optimization may be able to arrive at similar plan, whereas greater trial-and-
error is performed to adjust parameters of optimization model. Although the optimal prescribed dose
remains unclear, at the same prescribed dose, our proposed optimization method can obtain better
plan. Conclusion: Our proposed optimization method has the potential to expand the solution space and
improve the quality of radiotherapy plan.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The purpose of radiation treatment planning is to ensure the
conformal and homogeneous irradiation of the planning target
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volume (PTV) while protecting normal tissue (NT) and organs at
risk (OARs). This can be achieved through intensity-modulated
radiation therapy (IMRT) by modulating fields from several direc-
tions of the beam [1].

The key technique andmain task of IMRT is to devise an accept-
able plan through the solution to an inverse problem. The process
of the solution is defined as inverse planning, the key link of which
is to solve intensity distributions of external beams that determine
the quality of radiotherapy. Furthermore, in inverse planning, the
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quality of an optimized treatment plan is affected by the optimiza-
tion objective function and the optimization algorithm [2].

The objective function is an important index for the optimiza-
tion and evaluation of treatment planning because it is a tool to
assess a radiotherapy plan as well as the connection between ray
parameters and output dose distributions. Moreover, it influences
the searching ability of the optimization method. The optimized
criteria applied to the objective function are either physical factors
(maximum dose, minimum dose, uniform dose, and dose-volume
constraint) or biological indices (tumor control probability (TCP),
normal tissue complication probability (NTCP), and generalized
equivalent uniformdose (gEUD)) [3]. Due to the uncertainty associ-
atedwith them, the TCP andNTCPmodels have not been utilized in
radiotherapy inverse planning systems [4]. gEUD-based optimiza-
tion, however, has been investigated by several scholars [4–14]
and clinically utilized in the Varian system [15]. In these studies,
most optimization models, based on physical criteria or gEUD,
were transformed into linear or quadratic models. Wu et al. [16]
proposed some dose-based quadratic optimization models by pe-
nalizing the mean-squared deviations of the various doses or DV
constraints predefined by the planner. Dirscherl et al. [12] pro-
posed a gEUD-based quadratic model that penalized the square of
the absolute difference between the actual dose and the prescribed
dose. To penalize gEUD doses higher than the prescribed gEUD0,
Raysearch Laboratories AB SS [15] proposed an optimizationmodel
of the relative deviation square. Mihailidis et al. [10] and Lee
et al. [14] adopted gEUD-based linear optimizationmodels penaliz-
ing relative deviation between the actual and the prescribed gEUD.

Gradient-based optimization algorithms have been utilized in
commercial inverse planning systems (HELIOS and Pinnacle) due
to their speed [17]. Nevertheless, when gradient algorithms are
used to solve the relative deviation-based optimization models
mentioned above [10,14–16], the problems of semi-deviation and
the vanishing gradient, described below, arise. These may lead to
the loss of better solutions in the feasible solution space, which
can result in lower doses to OARs without any sacrifice of PTV
treatment goals. Using the gEUD-based optimization model [15]
shown in Eq. (1) as an example illustrates the shortcomings of this
kind of function. H(·) is a step function, gEUD is the actual dose,
and gEUD0 is the prescribed dose. Then,

f (gEUD) = H(gEUD − gEUD0)(
gEUD − gEUD0

gEUD0
)2 (1)

(1) Semi-deviation penalties [18]. The organ constrained by the
objective function (1) is assigned a quadratic penalty if and only
if gEUD ≥ gEUD0; otherwise, the penalty is zero. In this case,
reducing the dose to gEUD0 is the only incentive of using the
optimization algorithm, even though a better plan with a lower
gEUD may well be attainable without sacrificing other treatment
goals.

(2) Vanishing gradient in the feasible solution space. If the
gEUD delivered to the organ controlled by Eq. (1) is less than or
equal to gEUD0, the function is equal to zero, which implies zero
gradients in the interior of the feasible solution space. Assuming
a feasible point in the solution space, it is difficult for a gradient-
based optimization algorithm to predict the step length.

The above problems limit the search capability of the gradient
algorithm. We attempt to resolve these problems by a dose pre-
scription of zero to the OARs, whereas the conflict between PTV
coverage and OAR sparing tends to exacerbate. The improvement
to the linearmodel byMihailidis et al. [10] and Lee et al. [14]will be
reported elsewhere by us. Our work in this study seeks to propose
and assess improved quadratic sub-scores for maximum dose sub-
score [16] and gEUD sub-score [15], to solve the two problems de-
scribed above. To verify their efficiency, the new sub-scores were
incorporated into a maximum dose-based physical model and a

gEUD-based hybrid physical–biological model, respectively, and
were tested on three types of cases. The two models were used as
optimization objective functions of the fluence map optimization
(FMO) inverse problem. The large-scale, constrained optimization
problemswere then solved by a gradient-based optimization algo-
rithm (L-BFGS) [19]. To avoid non-physical solutions, the square
roots of the beamlet weights were considered optimized vari-
ables [20].

In the following sections, we describe in details the materials
and methods contained in the proposed method. We then show
our experimental results, and finally discuss the results and future
direction of research.

2. Materials and methods

2.1. Improved optimization models

The new maximum-dose-based quadratic sub-score and the
gEUD-based quadratic sub-scorewere incorporated into a physical
model and a hybrid model, respectively, and were tested on three
types of testing cases. The optimization models used in our work
were defined as the weighted sum of sub-scores for all organs
under the optimization.

(1) Improved maximum dose-based physical model
In the maximum-dose-based model, maximum-dose-based

sub-score was applied to minimize the dose delivered to the OAR,
along with a mean dose-based sub-score to control the dose to the
PTV. A typical maximum-dose-based physical quadratic model is
defined as

min
x≥0

∑
σ∈C

ζ σ 1
Nσ

∑
j∈υσ

(ωjx − Dσ
max)

2
+

+

∑
ϑ∈T

ξϑ 1
Nϑ

∑
j∈υϑ

(ωjx − Dϑ
mean)

2. (2)

The term 1
Nσ

∑
j∈υσ

(ωjx − Dσ
max)

2
+
is the original maximal dose

sub-score, and the operator (·)+ is equal to step function H(·).
C and T represent the collection of OARs and PTV, respectively,
υσ denotes the set of voxels in OAR σ , and υϑ denotes the set
of voxels in PTV ϑ . The number of voxels in the OAR and the
PTV are represented by Nσ and Nϑ , respectively. ζ σ and ξϑ are
the weighting factors, representing the clinical significance of the
corresponding sub-objective functions, and are determined by trial
and error.Dmax andDmean represent the prescribedmaximal dose to
the OAR and the prescribed mean dose to the target, respectively.
ωj, computed using CERR’s pencil beam algorithm (QIB), is the jth
row of dose deposition matrix W , and x is the optimized vector of
beamlet weight (i.e., fluence element).

To solve above mentioned problems, an extra linear penalty is
introduced to the maximum-dose-based sub-score. The improved
physical model with piecewise penalty function is

min
x≥0

∑
σ∈C
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(ωjx + (ωjx − Dσ
max)
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+
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+
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2
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In Eq. (3), 1
Nσ

∑
j∈υσ

(ωjx + (ωjx − Dσ
max)

2
+
) is the improved

maximum-dose-based sub-score. For critical structures σ , doses
lower than the prescribed dose Dmax are given a linear penalty
ωjx, whereas doses higher than Dmax are given an extra quadratic
penalty. By doing so, the problems, the semi-deviation penalty and
the vanishing gradient in the feasible solution space, are all solved.

(2) Improved gEUD-based hybrid physical–biological model
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