Accepted Manuscript

A Sybil attack detection scheme for a forest wildfire monitoring application

Mian Ahmad Jan, Priyadarsi Nanda, Xiangjian He, Ren Ping Liu

PII: S0167-739X(16)30152-2

DOI: http://dx.doi.org/10.1016/j.future.2016.05.034

Reference: FUTURE 3058

To appear in: Future Generation Computer Systems

Received date: 1 September 2015 Revised date: 24 May 2016 Accepted date: 25 May 2016

Please cite this article as: M.A. Jan, P. Nanda, X. He, R.P. Liu, A Sybil attack detection scheme for a forest wildfire monitoring application, *Future Generation Computer Systems* (2016), http://dx.doi.org/10.1016/j.future.2016.05.034

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

A Sybil Attack Detection Scheme for a Forest Wildfire Monitoring Application

Mian Ahmad Jan^{a,b}, Priyadarsi Nanda^{a,*}, Xiangjian He^{a,*}, Ren Ping Liu^b

^aSchool of Computing and Communications, University of Technology, Sydney, Australia
^bWireless and Networking Laboratory, CSIRO, Sydney, Australia

Abstract

Wireless Sensor Networks (WSNs) have experienced phenomenal growth over the past decade. They are typically deployed in human-inaccessible terrains to monitor and collect time-critical and delay-sensitive events. There have been several studies on the use of WSN in different applications. All such studies have mainly focused on Quality of Service (QoS) parameters such as delay, loss, jitter etc. of the sensed data. Security provisioning is also an important and challenging task lacking in all previous studies. In this paper, we propose a Sybil attack detection scheme for a cluster-based hierarchical network mainly deployed to monitor forest wildfire. We propose a two-tier detection scheme. Initially, Sybil nodes and their forged identities are detected by high-energy nodes. However, if one or more identities of a Sybil node sneak through the detection process, they are ultimately detected by the two base stations. After Sybil attack detection, an optimal percentage of cluster heads are elected and each one is informed using nomination packets. Each nomination packet contains the identity of an elected cluster head and an end user's specific query for data collection within a cluster. These queries are user-centric, on-demand and adaptive to an end user requirement. The undetected identities of Sybil nodes reside in one or more clusters. Their goal is to transmit high false-negative alerts to an end user for diverting attention to those geographical regions which are less vulnerable to

Email addresses: Priyadarsi.NandaQuts.edu.au (Priyadarsi Nanda), Xiangjian.HeQuts.edu.au (Xiangjian He)

^{*}Corresponding author

Download English Version:

https://daneshyari.com/en/article/6873352

Download Persian Version:

https://daneshyari.com/article/6873352

<u>Daneshyari.com</u>