
Future Generation Computer Systems () –

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Norm-based deontic logic for access control, some computational
results
Xin Sun a,b,∗, Xishun Zhao a, Livio Robaldo c

a Institute of Logic and Cognition, Sun Yat-sen University, Guangzhou, China
b Department of Foundations of Computer Science, Faculty of Philosophy, The John Paul II Catholic University of Lublin, Lublin, Poland
c University of Luxembourg, Luxembourg

a r t i c l e i n f o

Article history:
Received 11 September 2016
Received in revised form
20 December 2016
Accepted 22 January 2017
Available online xxxx

Keywords:
Deontic logic
Access control
Computational complexity

a b s t r a c t

In this paper we study the complexity of deontic logics grounded on norm-based semantics and apply
norm-based deontic logic to access control. Four principal norm-based deontic logics have been proposed
so far: imperative logic, input/output logic, deontic default logic and deontic defeasible logic. We present
the readers that imperative logic is complete for the 2ed level of the polynomial hierarchy and deontic
default logic is located in the 3ed level of the polynomial hierarchy. We then show how it is possible to
impose restrictions to imperative logic such that the complexity goes down to be tractable, allowing the
logic to be used in practical applications. We focus on a specific application: access control.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Deontic logic is a formal study of normative reasoning and
norms. In 1951, the philosopher and logician Georg von Wright
wrote a paper called ‘‘Deontic Logic’’ [1], which subsequently
became the name of the research area. Von Wright’s deontic logic
is exactly the same as the modal logic KD. Such logic is later called
standard deontic logic (SDL). With the work of Meyer [2], deontic
logic became a part of computer science. SDL has been a useful tool
in the specification and reasoning of access control policies because
key notions in access control such as permission, prohibition and
obligation are exactly the subjects of SDL [3–5].

Deontic logic provides a mathematically rigorous language for
modeling access control policies. The vagueness and ambiguity
of informal language disappear in the formal language of deontic
logic. Deontic logic is also associated with a sound and complete
axiomatic characterization. The interpretation of the normative
concepts is axiomatically constructed in deontic logic. As a
consequence of completeness, the framework is guaranteed to be
consistent. Without consistency, the move to the implementation
level would be meaningless.

Different approaches of deontic logic, alternative to SDL, have
been studied in the past 6 decades including imperative logic [6,7],

∗ Corresponding author at: Institute of Logic and Cognition, Sun Yat-sen
University, Guangzhou, China.

E-mail address: xin.sun.logic@gmail.com (X. Sun).

dynamic deontic logic [2,8], deontic STIT logic [9,10], input/output
logic [11], deontic default logic [12,13] and deontic defeasible
logic [14,15]. Those results are summarized in the handbook
of deontic logic [16,17]. In imperative logic, input/output logic,
deontic default logic and deontic defeasible logic, norms are
explicitly represented. The truth value of deontic propositions in
those logics are explained not by some set of possible worlds,
but with references to a set of given norms. Such a non-possible
world semantics has been originally termed in Hansen [18] as
‘norm-based semantics’. We then use norm-based deontic logic
as a general term to refer input/output logic, imperative logic,
deontic default logic and deontic defeasible logic and use deontic
modal logic to refer those approaches which adopt possible world
semantics such as SDL.

Norms are the first class citizens in norm-based deontic logic.
Norms are everywhere in our daily life and also in access control.
For example:

• You should drive on the right side.
• Alice is permitted to read file-1 on Mondays.
• Bob is forbidden to write on file-2.
• Carol is obliged to delete all related files when he finishes his

task.

In general, we view norms as normative rules which are used to
regulated agent’s behavior. A norm is a rule in the sense that it con-
tains both a premise and a consequence. The premise describes
the situation in which it is triggered, while the consequence pre-
scribes the demand of the norm. Norms are normative in the sense

http://dx.doi.org/10.1016/j.future.2017.01.028
0167-739X/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2017.01.028
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:xin.sun.logic@gmail.com
http://dx.doi.org/10.1016/j.future.2017.01.028

2 X. Sun et al. / Future Generation Computer Systems () –

that they classify what is obligatory, permitted or forbidden. An
access control policy is a set of norms defining which user is to
be granted access to which resource under which circumstances.
Compared to SDL, norm-based deontic logic has the following ad-
vantages.
1. Norm-based deontic logic solves the contrary-to-duty paradox.

The contrary-to-duty paradox is the most notorious paradox in
deontic logic. The original phrasing of the paradox requires a
formalization of the following scenario in which the sentences
are mutually consistent and logically independent [19].
(a) It ought to be that John goes to help his neighbors.
(b) It ought to be that if John goes to help his neighbors, then

he tells them he is coming.
(c) If John does not go to help his neighbors, then he ought not

to tell them he is coming.
(d) John does not go to help.
But the formalization of the above scenario using SDL is either
inconsistent or not logically independent. Being not able to
solve the contrary-to-duty paradox is seen as one of the most
serious limitations of SDL. The contrary-to-duty scenario is
also found in access control and it is called the ‘‘violation of
obligation’’ in Benferhat et al. [20] and corresponds to the policy
of reaction to new intrusions in Cuppens [5].

Norm-based deontic logic, on the other hand, gives consis-
tent and logically independent formalization of the above sce-
nario, therefore solves the contrary-to-duty paradox. In general,
norm-based deontic logic provides correct prescriptions in sit-
uations where some norms are already violated [21].

2. Norm-based deontic logic offers a formal mechanism to deal
with normative conflicts.

Consider the following scenario taken from Hansen [7],
which is sometimes called the ‘order puzzle’: before you go
to a party, you become the recipient of various imperative
sentences:
(a) Your mother says: if you drink anything, then do not drive.
(b) Your best friend says: if you go to the party, then you drive.
(c) Some acquaintance says: if you go to the party, then have a

drink with me.
Assumemother ismore important than best friend,who ismore
important than acquaintance. What will you do? Intuitively,
you should obey your mother and your best friend, and hence
do the driving and not accept your acquaintance’s invitation.
However, it is not so clear what formal mechanism could
explain this reasoning. Handling normative conflicts is also an
important issue in access control and is discussed in Benferhat
et al. [20]. SDL is unable to handle such conflicting imperatives.
On the other hand, norm-baseddeontic logic appears as suitable
tools to formalize such reasoning.

3. Norm-based deontic logic characterizes various notions of
permission.

Permission is probably the most important notion in the
specification of an access control policy [22,23]. Philosophically,
it is common to distinguish between two kinds of permission:
negative permission and positive permission. Negative permis-
sion is straightforward to describe: something is negatively per-
mitted according to certain norms iff it is not prohibited by
those norms. That is, iff there is no obligation to the contrary.
Positive permission is more elusive. Intuitively, something is
positively permitted according to certain norms iff it can be de-
rived from those norms. But what exactly does ‘‘derive’’ mean?
In mathematics we can derive theorems in a ‘‘straight’’ way or
by contradiction. These twomethods of derivation give two dif-
ferent notions of positive permission. Makinson and van der
Torre [24] introduces these two types of positive permission
as static and dynamic permission. Other notions of permission,
such as permission as exception, have been studied in [25,26].
All these notions of permission are useful in access control and
can be captured by norm-based deontic logics, while SDL is only
able to capture negative permission.

The above advantages of norm-based deontic logic shows that
comparing to SDL, norm-based deontic logic is a better tool to be
applied in the specification and reasoning of access control policies.
Among those existing norm-based deontic logics, imperative logic
is the most suitable for access control because different notions of
permission can be uniformly expressed in imperative logic.

For the existing norm-based deontic logics, the computational
complexity of input/output logic and deontic defeasible logic is
studied in [27,26]. In this paper, we study the complexity of
imperative logic and deontic default logic (Sections 3 and 5.1).
We show that both imperative logic and deontic default logic
are decidable but computationally intractable. We then impose
restrictions to obtain some tractable imperative logic such that we
can practically apply them to access control (Section 4). For the
sake of readability, we put all proofs in the Appendix.

2. Background: complexity theory

We assume the readers are familiar with notions like Turing
machines and the complexity classesP,NP andcoNP. Oracle Turing
machines and some complexity classes related to oracle Turing
machines will be used in this paper.

Definition 1 (Oracle Turing Machine [28]). An oracle for a language
L is a device that is capable of reporting whether any string w is
a member of L. An oracle Turing machine ML is a modified Turing
machine that has the additional capability of querying an oracle.
WheneverML writes a string on a special oracle tape it is informed
whether that string is a member of L, in a single computation step.

PNP is the class of problems solvable by a deterministic
polynomial time Turing machine with an NP oracle. NPNP is the
class of problems solvable by a non-deterministic polynomial time
Turing machine with an NP oracle. Σp

2 is another name for NPNP.
Π

p
2 is another name for coNPNP. ∆p

i+1 is PΣ
p
i and Σ

p
i+1 is NPΣ

p
i .

3. Imperative logic

If some given norms come into conflict, the best an agent can
be expected to do is to follow a maximal subset of those norms.
Intuitively, a priority ordering over the norms can be helpful
in resolving conflicts, but a formal resolution mechanism has
been difficult to provide. In particular, reasoning about prioritized
norms is overshadowed by problems such as the order puzzle that
are not satisfactorily resolved bymany existing approaches such as
Brewka [29], Marek and Truszczynski [30]. Based on input/output
logic [11], Hansen [7] develops prioritized imperative logic which
overcomes those difficulties.

3.1. Input/output logic

Input/output logic takes its origin in the study of conditional
norms. The basic idea is: norms are conceived as a deductive
machine, like a black box which produces normative statements
as output, when we feed it factual statements as input. In
input/output logic, a norm is an ordered pair of formulas (a, x) ∈

LP × LP, where LP is the language of propositional logic build
from the set of propositional atoms P. There are two types of
norms which are used in input/output logic, mandatory norms
and permissive norms. A mandatory norm (a, x) ∈ O is read as
‘‘given a, x is obligatory’’. A permissive norm (a, x) ∈ P is read as
‘‘given a, x is permitted’’. Mandatory norms are called commands
or imperatives in imperative logic, while permissive norms are
called licenses or authorizations. To distinguish these two types
of norms in notation, we may represent commands as a⇒o x and
licenses as a⇒p x. In this paper, wewill however stick the notation

Download English Version:

https://daneshyari.com/en/article/6873433

Download Persian Version:

https://daneshyari.com/article/6873433

Daneshyari.com

https://daneshyari.com/en/article/6873433
https://daneshyari.com/article/6873433
https://daneshyari.com

