
Future Generation Computer Systems 47 (2015) 80–96

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Harmonizing architectural decisions with component view models
using reusable architectural knowledge transformations and
constraints
Ioanna Lytra ∗, Huy Tran, Uwe Zdun
Research Group Software Architecture, University of Vienna, Austria

h i g h l i g h t s

• Reusable AK transformation language for automated transformation of ADDs into designs.
• Reusable constraints for consistency checking between decisions and designs.
• Tool support based on integration of two existing tools—ADvISE and VbMF.

a r t i c l e i n f o

Article history:
Received 4 November 2013
Received in revised form
24 October 2014
Accepted 10 November 2014
Available online 18 November 2014

Keywords:
Architectural decisions
Architectural design
Architectural knowledge
AK transformation language
Consistency checking

a b s t r a c t

Architectural design decisions (ADDs) have been used in recent years for capturing design rationale and
documenting architectural knowledge (AK). However, various architectural design views still provide the
most common means for describing and communicating architectural design. The evolution of software
systems requires that both ADDs and architectural design views are documented and maintained, which
is a tedious and time-consuming task in the long run. Also, in lack of a systematic and automated
support for bridging between ADDs and architectural design views, decisions and designs tend to
become inconsistent over time. In our proposal, we introduce a reusable AK transformation language
for supporting the automated transformation of reusable AK knowledge to component-and-connector
models, the architectural design view used most commonly today. In addition, reusable consistency
checking rules verify the consistency between decisions and designs. We evaluate our approach in an
industrial case study and show that it offers high reusability, provides automation, and can, in principle,
deal with large numbers of recurring decisions.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

From the various architectural views [1–3] used to document
software architectures the component-and-connector (C&C) view
is often considered the one that contains the most significant ar-
chitectural information [1]. Inmany enterprises today, software ar-
chitecture ismainly documented using component-and-connector
diagrams, usually in an informal or semi-formal fashion (e.g., as
box-and-line diagrams). However, architectural documentations
based only on components and connectors have many disad-
vantages, such as limited reusability of and reasoning about ar-
chitectural knowledge (AK), and lack of sharing support of this

∗ Corresponding author.
E-mail addresses: ioanna.lytra@univie.ac.at (I. Lytra), Huy.Tran@univie.ac.at

(H. Tran), Uwe.Zdun@univie.ac.at (U. Zdun).

knowledge among stakeholders [4]. Therefore, the software archi-
tecture community has proposed a new perspective on software
architecture through the explicit documentation of architectural
design decisions (ADDs) [5]. The actual solution structure, or ar-
chitectural design, is merely a reflection of those design decisions.

Several approaches have been proposed for capturing archi-
tectural design decisions. Akerman and Tyree defined a rich deci-
sion capturing template [3]. Kruchten et al. presented an ontology
for architectural decisions that defines types of architectural de-
cisions, dependencies between them, and a decision lifecycle [6].
Zimmermann et al. suggested ameta-model for decision capturing
and modeling [7]. To minimize the effort of documenting archi-
tectural decisions, approaches for reusable architectural decision
modeling [8] and using design patterns as a basis for documenting
reusable ADDs (see, e.g., [9]) have been proposed.

ADDs play a crucial role not only during architectural design
but also during development, evolution, reuse, and integration of

http://dx.doi.org/10.1016/j.future.2014.11.010
0167-739X/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2014.11.010
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2014.11.010&domain=pdf
mailto:ioanna.lytra@univie.ac.at
mailto:Huy.Tran@univie.ac.at
mailto:Uwe.Zdun@univie.ac.at
http://dx.doi.org/10.1016/j.future.2014.11.010


I. Lytra et al. / Future Generation Computer Systems 47 (2015) 80–96 81

software architectures [5]. In practice, the ADDs frequently are nei-
ther maintained nor synchronized over time with the correspond-
ing C&C diagrams (or other design views), that is decisions and
designs drift apart over time [5]. This leads potentially to the loss of
architectural knowledge, a phenomenon which is known as archi-
tectural knowledge vaporization [5,9]. Lacking of an adequate har-
monization between software architectures and design decisions
often leads to more severe consequences [10].

Until now, the establishment and preservation of consistency
between decisions and designs have not been addressed or sup-
ported systematically. That is, so far there is no formal mapping or
automated translation between ADDs and design views. Thus, the
task of harmonizing decisions and designs remains ad hoc and te-
dious. Makingmatters worse, the actual documentation of ADDs is
also time consuming [8], especially for kinds of ADDs that need to
be made repeatedly throughout a software design process, such as
many of the ADDs documented in [11,12].

In our previous work [13], we partially addressed the prob-
lem of bridging ADDs and designs. This approach introduced a
formal mapping model between different ADD types, on the one
hand, and elements and properties of C&C models, on the other
hand. Based on this formal mapping model, preliminary compo-
nentmodels and OCL-like constraints for consistency checking can
be derived. Yet, so far this mapping model had to be manually cre-
ated and modified for each ADD separately, making this approach
inefficient for large numbers of ADDs and/or complex designmod-
els. Moreover, in reality, several ADDs can be reused in different
software design contexts and domains [7]. Thus, taking advantage
of the reusability of such recurring decisions would significantly
enhance the productivity in creating and maintaining the formal
mappings between the decisions and the designs. Unlike our pre-
vious work [13], we now set the focus on reusable architectural
knowledge.

The approach presented in this paper aims at addressing the
aforementioned challenges. In particular, our proposal introduces
an architectural knowledge transformation language. This domain-
specific language supports the specification of primitive and
complex actions whose enactment leads to automatic updates of
design models (i.e., C&C diagrams) based on the corresponding
documented ADDs. The outcomes of a certain decision can be ex-
pressed either by executing individual actions, such as the creation
of new elements or the deletion, modification, or grouping of ex-
isting elements in the C&C diagrams, or by executing composite
actions (e.g., for capturing reusable pattern-based ADDs) that can
be formally modeled through certain architectural primitives [14]
or other composite actions. To ensure consistency between ADDs
and C&C views, constraints are automatically generated from the
execution of transformation actions. That is, the constraints ensure,
for instance, that manual changes in C&C views do not violate the
ADDs.

In our approach, we exploit template-based generation rules
and model-driven techniques for automatically instantiating and
enacting the actions, as well as generating corresponding con-
straints. The linking of reusable ADDs to reusable actions and
constraints (in template form) offers higher reusability and au-
tomation and results in less complexity and modeling effort for
software architects. The reusability is achieved here (1) through
the automatic derivation of parts of the C&C diagrams and con-
sistency checking rules using model-driven templates and (2) by
reusing common abstractions shared among common design pat-
terns (see [14]).

In order to demonstrate our approach, we integrated two tools
from our previous work: ADvISE1—a tool for assisting architectural

1 http://swa.univie.ac.at/Architectural_Design_Decision_Support_Framework_
(ADvISE).

decisionmaking for reusable ADDs, and VbMF2—a tool for describ-
ing architectural view models and performing model-driven code
generation. Using this prototypical implementation we evaluated
our proposal in the context of an industrial case study from the
warehouse automation area, in terms of reusability and modeling
effort.

Our approach solely addresses C&C views at the moment, but
it is possible to integrate other architectural design aspects with
architectural decisions. The incorporation of other views is sup-
ported in VbMF via its view integration techniques [15]. Illustra-
tive examples of different aspects that are integrated using VbMF
include data [16], human [17], event and runtimemonitoring [18],
and compliance [19]. Investigating architecture-specific informa-
tion leveraging the integration of different VbMF views is beyond
the scope of this paper and part of our future work.

This article is an extension of our conference publication [20]
with following significant additions and improvements: (a) amore
complete list of compound transformation actions and reusable
constraints has been included along with further elaborations, (b)
the case study and evaluations have been extended, and (c) the
related work has been discussed further and compared to our
contributions.

The remainder of the paper is structured as follows. First, in
Section 2 we introduce some basic concepts and present briefly
the ADvISE and VbMF tools and their meta-models. In Section 3
we describe the details of our approach, namely we present the
reusable AK transformations and consistency checking rules along
with some illustrative examples. We apply our approach in an
industrial case study in Section 4 and discuss the evaluation results
in Section 5. Finally, we compare to the related works in Section 6
and summarize the key contributions of our work in Section 7.

2. Background

The main focus of our study is the harmonization of architec-
tural design decisions and architectural models. This involves the
tasks of making and documenting design decisions and creating
and manipulating architectural models. Thus, in this section we
briefly present ADvISE and VbMF, the two tools that support these
tasks and are leveraged to illustrate our approach. Before that, we
introduce some key concepts that we will use throughout the pa-
per.

2.1. Basic concepts

According to the ISO/IEC/IEEE 42010 standard [2] an ADD af-
fects various architectural elements, pertains to or raises concerns,
and is justified by architecture rationale. ADDs capture knowledge
that may concern a software system as a whole, or one or more
components of a software architecture. Rather than documenting
the structure of software systems (e.g., components and connec-
tors) ADDs entail the design rationale that led to that structure
(e.g., justification about the ADDs that were made and the archi-
tectural alternatives not chosen).

For capturing reusable ADDs, architectural decision modeling
has been introduced in the existing literature (refer to [21] for a
comparison of existing architectural decision models and tools).
The advantage of these architectural decision models is that they
are reusable and can thus provide guidance for architectural deci-
sion making activities, whenever recurring design issues emerge.
Reusable architectural models share common concepts with pat-
terns (see [9]) which give proven solutions to recurring problems

2 http://swa.univie.ac.at/View-based_Modeling_Framework.

http://swa.univie.ac.at/Architectural_Design_Decision_Support_Framework_(ADvISE)
http://swa.univie.ac.at/Architectural_Design_Decision_Support_Framework_(ADvISE)
http://swa.univie.ac.at/Architectural_Design_Decision_Support_Framework_(ADvISE)
http://swa.univie.ac.at/Architectural_Design_Decision_Support_Framework_(ADvISE)
http://swa.univie.ac.at/Architectural_Design_Decision_Support_Framework_(ADvISE)
http://swa.univie.ac.at/Architectural_Design_Decision_Support_Framework_(ADvISE)
http://swa.univie.ac.at/Architectural_Design_Decision_Support_Framework_(ADvISE)
http://swa.univie.ac.at/Architectural_Design_Decision_Support_Framework_(ADvISE)
http://swa.univie.ac.at/Architectural_Design_Decision_Support_Framework_(ADvISE)
http://swa.univie.ac.at/Architectural_Design_Decision_Support_Framework_(ADvISE)
http://swa.univie.ac.at/Architectural_Design_Decision_Support_Framework_(ADvISE)
http://swa.univie.ac.at/View-based_Modeling_Framework


Download English Version:

https://daneshyari.com/en/article/6873529

Download Persian Version:

https://daneshyari.com/article/6873529

Daneshyari.com

https://daneshyari.com/en/article/6873529
https://daneshyari.com/article/6873529
https://daneshyari.com

