
Future Generation Computer Systems () –

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Preserving architectural pattern composition information through
explicit merging operators
M.T.T. That ∗, S. Sadou, F. Oquendo, I. Borne
Université de Bretagne Sud, IRISA, Vannes, France

h i g h l i g h t s

• We give pattern merging operators first-class status.
• We enable the traceability and the reconstructability of architectural patterns.
• We implemented the composition-centered architectural pattern description language.
• We conducted an empirical study on existing architectural patterns.

a r t i c l e i n f o

Article history:
Received 1 November 2013
Received in revised form
3 June 2014
Accepted 2 September 2014
Available online xxxx

Keywords:
Architectural pattern
Pattern composition
Model driven engineering

a b s t r a c t

Composable software systems have been proved to support the adaptation to new requirements thanks
to their flexibility. A typical method of composable software development is to select and combine a
number of patterns that address the expected quality requirements. Therefore, pattern composition has
become a crucial aspect during software design. One of the shortcomings of existing work about pattern
composition is the vaporization of composition information which leads to the problem of traceability
and reconstructability of patterns. In this paper we propose to give first-class status to pattern merging
operators to facilitate the preservation of composition information. The approach is tool-supported and
an empirical study has also been conducted to highlight its effectiveness. By applying the approach on
the composition of a set of formalized architectural patterns, including their variants, we have shown
that composed patterns have become traceable and reconstructable.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A key issue in the design of any software system is the soft-
ware architecture. It consists of the fundamental organization of
the system embodied in its components, their relationships to each
other and to the environment, and the principles guiding its design
and evolution [1]. Software architecture gives a basis for analysis of
software systems before the system has been built and thus, helps
manage risk and reduces cost during the software development. A
good software architecture produces not only a system that works
properly (the functional requirements) but also a system that
meets non-functional requirements such as maintainability, ex-
changeability and reusability. [2]. Patterns address this important
objective of software architecture by allowing the construction of
specific software architectures with well-defined properties.

∗ Corresponding author. Tel.: +33 0608214462.
E-mail addresses:minh-tu.ton-that@irisa.fr, minhtutonthat@gmail.com

(M.T.T. That), Salah.Sadou@irisa.fr (S. Sadou), Flavio.Oquendo@irisa.fr
(F. Oquendo), Isabelle.Borne@irisa.fr (I. Borne).

Indeed, some architecture description languages (ADL) such as
Wright and ACME [3,4] support the construction of architectures
by using predefined architectural patterns. Thus, the construction
of architectures is simplified (reuse of the whole pattern struc-
ture) and equipped with proven solutions for well-known needs.
Further, in real world architectures recurring problems are com-
plex and their solutions can be represented by patterns in complex
forms that require the combination and reuse of other existing ar-
chitectural patterns [5]. The combined patterns on one hand, han-
dle the increased complexity of the architecture and on the other
hand, capture the properties of participating patterns. For instance,
a system might use a pipe and filter pattern to process data but
writes the result to a shared database. Thus, this system uses a
pattern which is the combination of pipe and filter and shared
repository patterns. In the literature, current support for pattern
composition consists in fact of using merging operators that are
not part of the pattern language [6–9]. Thus, once the architectural
solution is achieved there is nomeans to know that it is a result of a
composition of patterns. This is caused by what we call the vapor-
ization of composition information. This prevents the traceability

http://dx.doi.org/10.1016/j.future.2014.09.002
0167-739X/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2014.09.002
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:minh-tu.ton-that@irisa.fr
mailto:minhtutonthat@gmail.com
mailto:Salah.Sadou@irisa.fr
mailto:Flavio.Oquendo@irisa.fr
mailto:Isabelle.Borne@irisa.fr
http://dx.doi.org/10.1016/j.future.2014.09.002

2 M.T.T. That et al. / Future Generation Computer Systems () –

Fig. 1. Overlapping composition of Mediator pattern and Proxy pattern.

Fig. 2. Conjunction composition of Mediator pattern and Proxy pattern.

as well as the reconstructability of patterns which are essential for
software evolution.

For addressing these open issues, we propose to reserve
first-class citizenship for pattern merging operators. Throughout
this paper, we show that being able to store and manipulate
merging operators is crucial in the context of pattern construction.
The idea is implemented in an architectural pattern description
language, called COMLAN (Composition-Centered Architectural
Pattern Description Language). The language provides a proper
description of pattern that supports composition operations
and a two-step pattern design process that helps to preserve
pattern composition information. The idea is applicable in both
architectural patterns and design patterns. However, in this work
we focus our approach as well as its evaluation on architectural
patterns. The remainder of this paper is organized as follows:
Section 2 presents the state-of-the-art for pattern composition
and pattern description. Section 3 points out the open issues
through examples. Section 4 introduces the general approach
to address the identified problems and goes into details of the
pattern description language. Section 5 describes the pattern
refinement step. Section 6 gives implementation information.
Section 7 describes the validation of the proposed approach using
empirical studies. Finally, Section 8 concludes the paper.

2. State of the art

As described in the previous section, the research problem we
deal with is the vaporization of pattern composition information.
This problem directly concerns two research areas: pattern com-
position and pattern description in ADLs. In the following we will
elaborate the state of the art of these domains.

2.1. Pattern composition

There are mainly two branches of work on the composition of
patterns. The first including [6–8] proposes to combine patterns
at the pattern level which means that patterns are composed be-
fore being initialized in the architectural model. These approaches
support two types of pattern element composition. The first type

consists of creating a totally new element which is the product
of the unification of participating elements. Regardless of the dif-
ferent terminologies used in [6] (conservative composition), in [8]
(unification) or in [7] (overlapping), the same idea is that the com-
bined element will have all the characteristics of participating
elements, and thesewill nomore be present in the combined struc-
ture. An example taken from [8] is the composition of theMediator
pattern and the Proxy pattern as shown in Fig. 1. The composi-
tion takes place between the Colleague class of the Mediator pat-
tern and the Real subject class of the Proxy pattern. In its original
pattern, the Colleague class extends the Colleague Interface. Simi-
larly, the Real subject class extends the Subject class and contains
the Request method. In the combined pattern, the Real Colleague
class, which is the product of the composition of Colleague class
and Real subject class, inherits all the features of its constituent
classes. More specifically, it is a Real subject that can communicate
with other Colleagues of a Mediator structure.

The second type implies that the participating elements in the
composition keep their own identity, no new structure is formed
because of the composition. Instead, a link element is added to con-
nect participating elements. This composition is called combina-
tive composition in [6] or conjunction in [8]. The example of the
composition of the Mediator pattern and the Proxy pattern is re-
taken to illustrate this type of composition. As shown in Fig. 2, the
composition takes place between the Mediator class of the Medi-
ator pattern and the Proxy class of the Proxy pattern. The result of
this composition is an added Proxy Reference which connects the
Mediator and the Proxy.

On the contrary to the approaches above, in [9], Deiters et al.
propose to compose pattern at instance level. An architecture en-
tity can at the same time play roles from different architectural
building blocks which in fact represent architectural patterns. As
a result, the affection of different architectural building blocks to
an architecture entity is not only an instantiation but also a com-
position.

In another work [10], Jing et al. propose a UML profile to attach
pattern-related information onmerged elements in composed pat-
terns. Fig. 3 is an example taken from [10]. The Business Delegate
pattern is composed with the Adapter pattern by overlapping the

Download English Version:

https://daneshyari.com/en/article/6873530

Download Persian Version:

https://daneshyari.com/article/6873530

Daneshyari.com

https://daneshyari.com/en/article/6873530
https://daneshyari.com/article/6873530
https://daneshyari.com

