Future Generation Computer Systems I (1IIN) IIE-100

Contents lists available at ScienceDirect 2 = :
FiGICIS!

Future Generation Computer Systems
journal homepage: www.elsevier.com/locate/fgcs = S

Self-adaptation of mobile systems driven by the Common Variability

Language

Gustavo G. Pascual *, Ménica Pinto, Lidia Fuentes
Universidad de Mdlaga, Andalucia Tech, Spain

HIGHLIGHTS

We specify an approach for the dynamic reconfiguration of mobile applications.

We model a mobile application with variability which can be reconfigured at runtime.

We simulate the execution of the mobile application when our dynamic reconfiguration service is applied and not applied, respectively.
We measure the battery life as well as the overall utility of the application perceived by the user.

Applying our dynamic reconfiguration, the battery life is incremented by 45.9% and the utility is incremented by 10.31%.

ARTICLE INFO ABSTRACT

Article history:

Received 20 November 2013
Received in revised form

12 June 2014

Accepted 26 August 2014
Available online xxxx

The execution context in which pervasive systems or mobile computing run changes continually. Hence,
applications for these systems require support for self-adaptation to the continual context changes. Most
of the approaches for self-adaptive systems implement a reconfiguration service that receives as input
the list of all possible configurations and the plans to switch between them. In this paper we present an
alternative approach for the automatic generation of application configurations and the reconfiguration

plans at runtime. With our approach, the generated configurations are optimal as regards different criteria,

Keywords:
Architectural variability

such as functionality or resource consumption (e.g. battery or memory). This is achieved by: (1) modelling
architectural variability at design-time using the Common Variability Language (CVL), and (2) using a

CVL genetic algorithm that finds nearly-optimal configurations at run-time using the information provided

Dynamic reconfiguration
Genetic algorithm
Context

Pervasive systems

by the variability model. We also specify a case study and we use it to evaluate our approach, showing
that it is efficient and suitable for devices with scarce resources.

© 2014 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Mobile applications demand runtime reconfiguration services
that make it possible for them to self-adapt their behaviour to
the continual contextual changes that occur in their environment.
Such reconfiguration services have to deal with the high variability
of possible configurations that fit the different dynamic contexts.
One accepted approach to manage the runtime variability of ap-
plications is the Dynamic Software Product Line (DSPL) approach.
DSPLs produce software capable of adapting to changes, by means
of binding the variation points at runtime [1]. This means that we
have to model the elements that could be adapted dynamically
as dynamic variation points and generate, at runtime, the different
variants of the DSPL.

* Corresponding author. Tel.: +34 952132846.
E-mail addresses: gustavo@lcc.uma.es (G.G. Pascual), pinto@lcc.uma.es
(M. Pinto), Iff@lcc.uma.es (L. Fuentes).

http://dx.doi.org/10.1016/j.future.2014.08.015

On the other hand, mobile applications run on lightweight de-
vices with scarce resources (e.g. battery, memory, CPU, etc.), so
they have to adapt their functionality to the continual resource
variations, and also to the user’s needs. Ideally, such optimiza-
tion should be managed autonomously by the application itself,
which should be able to self-optimize its functioning. For this pur-
pose, widely accepted by the distributed systems community, is
the use of the Autonomic Computing (AC) paradigm [2] to endow
distributed systems with self-management capacities, such as self-
adaptation and self-optimizing.

Combining the ideas of DSPL with AC, the development of a soft-
ware system with self-adaptation capacities implies the follow-
ing steps: (1) the variation points that the designer foresees that
may change at runtime (i.e. the dynamic variation points) have to
be modelled as part of the software architecture (SA); (2) the run-
time environment needs to be monitored to listen for contextual
changes that may affect the dynamic variation points; (3) when a
contextual change occurs, the system must analyse the relation-
ships between this change and the dynamic variation points, and

0167-739X/© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.

0/).

(2014), http://dx.doi.org/10.1016/j.future.2014.08.015

Please cite this article in press as: G.G. Pascual, et al., Self-adaptation of mobile systems driven by the Common Variability Language, Future Generation Computer Systems



http://dx.doi.org/10.1016/j.future.2014.08.015
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
mailto:gustavo@lcc.uma.es
mailto:pinto@lcc.uma.es
mailto:lff@lcc.uma.es
http://dx.doi.org/10.1016/j.future.2014.08.015
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

2 G.G. Pascual et al. / Future Generation Computer Systems I (RIEl) INE-ENI

whether or not a reconfiguration is needed; (4) if so, a plan defined
as the set of changes that need to be performed in the current con-
figuration over the set of dynamic variation points must be gener-
ated, ideally at runtime, and finally (5) the architectural variation
points that are affected by the reconfiguration must be modified
according to the plan generated in the previous step.

For the first step, a language to model the system variability
is needed. Variability is modelled at different abstraction levels,
mostly using feature models (FM) [3] at the requirements level and
UML profiles or Architecture Description Languages (ADLs) [4-6]
at the architectural level. In our approach, we model variability at
the architectural level using the Common Variability Language [7]
(CVL). The reason for choosing CVL is twofold. First, it is an
MOF-based variability language and this means that any MOF-
based application model can be easily extended with variability
information using CVL; second, it has been submitted to the OMG
for its standardization and it is expected to be accepted soon as the
standard for modelling and resolving variability.

For the rest of steps, we follow the widely known MAPE-K
loop [8] of the AC paradigm, where ‘MAPE’ stands for Monitor-
ing, Analysis, Plan and Execution and ‘K’ stands for Knowledge. Ex-
isting approaches [3,9-14] mainly consist of analysing, at design
time, the contextual changes and the generation of the reconfig-
uration plans to fit the new environmental conditions. Then, the
set of valid configurations are pre-calculated, as well as the differ-
ences between pairs of configurations and the conditions to adapt
the system from one configuration to another one. All this previ-
ously calculated information is loaded into the device as part of the
knowledge base of the MAPE-K loop. This is a shortcoming which
limits the number of possible configurations and prevents the gen-
eration of the optimal ones. Other existing approaches that gener-
ate the configurations at runtime [15-20] also have limitations in
mobile environments as usually most of them demand high com-
puting resources. Thus, one of the contributions of our approach is
the generation of the application configurations and the reconfigu-
ration plans automatically at runtime and efficiently, so that it can
be used in devices with few resources.

Moreover, most DSPL approaches do not consider the optimiza-
tion of the used resources at runtime. However, when the avail-
ability of certain resources decreases or increases significantly, the
ideal situation would be to be able to decide which architectural
configuration provides the best functionality, while not exceeding
the available resources. Thus, fast algorithms to calculate the opti-
mum configuration at runtime are desirable. Since this can be for-
mulated as an optimization problem, genetic algorithms (GAs) can
be used to optimize the selection of architectural variation points
that will conform the new configuration. In this sense, a second
contribution of our approach is the optimization of the used re-
sources using genetic algorithms.

Specifically, our approach defines a Context Monitoring Service
(CMS) for monitoring the environment and providing this informa-
tion to a Dynamic Reconfiguration Service (DRS), which covers the
analysis of the monitored information and the generation and ex-
ecution of the reconfiguration plans. Both services are designed to
be integrated in a middleware for adaptive applications develop-
ment [21], although in this paper we focus on presenting the de-
tails of how the DRS accomplishes the runtime reconfiguration of
mobile applications. On the one hand, our DRS has the SA with
variability specified using CVL available at runtime as part of the
knowledge base, using it to perform reconfiguration. On the other
hand, when the availability of certain resources decreases or in-
creases significantly, the DRS has to decide which architectural
configuration provides the best functionality, while not exceeding
the available resources. For this we use a GA called DAGAME [22],
optimized to be executed at runtime with scarce resources. As our
DRS is installed inside a mobile device, we present some evaluation

results showing that our approach is feasible and efficient enough
to be executed with the fairly limited resources of a mobile device,
resulting in good response times and nearly-optimal architectural
configurations.

The rest of the paper is organized as follows. The backgrounds
to CVL and genetic algorithms are presented in Section 2. After this,
the motivation of our approach, the main contributions and the
case study used throughout the paper are presented in Section 3.
Then, the approach is described further in Section 4. Evaluation
results are presented in Section 5, related work is discussed in
Section 6 and finally our conclusions and on-going work are
described in Section 7.

2. Background

In this section we provide a background to DSPLs. Furthermore,
we show the basics of CVL and genetic algorithms, which are used
in our approach to model the architectural variability and generate
the reconfiguration plan, respectively.

2.1. Dynamic software product lines

An SPL is “a set of software-intensive systems that share a
common, managed set of features satisfying the specific needs of
a particular market segment or mission and that are developed
from a common set of core assets in a prescribed way”.! DSPLs
move existing SPL engineering processes to runtime, ensuring that
system adaptations lead the system to a valid state. Therefore,
while in SPLs the engineering processes generate several systems
of the same family at design time, a DSPL is a single system which
is able to adapt its behaviour at runtime.

Variability modelling, which consists in specifying the com-
monalities and variabilities, is the central activity of both SPLs and
DSPLs. The engineering processes of SPLs generate products by se-
lecting specific values for the variable characteristics specified in
the variability model. Therefore, the SPL engineer binds the vari-
ation points at design time considering the requirements of the
intended product. In contrast, in DSPLs the variability model de-
scribes the potential range of variations that can be produced at
runtime for a single product, i.e. the dynamic variation points, which
must refer to the system architectural components. Therefore, in
DSPLs the system architecture supports all possible adaptations
defined by the set of dynamic variation points [1].

Then, as part of a DSPL definition the engineer must define:

1. The range of potential adaptations supported by the system in
terms of architectural components.

2. Anexplicit representation of the valid configuration space of the
system.

3. The context changes that may trigger an adaptation, i.e. the
criteria to initiate a reconfiguration or decision making process.

4. The set of possible reactions to context changes that should be
supported the system.

However, the way these aspects are implemented may differ
greatly, as will be shown in Section 6.

As for the majority of DSPLs the decision to initiate a reconfig-
uration is made autonomously by the system (not by a human),
they are considered a good technology for developing self-adapting
systems such as mobile applications. In this context, most DSPL
approaches share some common properties with the Autonomic
Computing paradigm [2] (AC) such as the monitoring of the envi-
ronment and the generation of successive configurations.

1 http://www.sei.cmu.edu/productlines/.

(2014), http://dx.doi.org/10.1016/j.future.2014.08.015

Please cite this article in press as: G.G. Pascual, et al., Self-adaptation of mobile systems driven by the Common Variability Language, Future Generation Computer Systems



http://www.sei.cmu.edu/productlines/

Download English Version:

https://daneshyari.com/en/article/6873534

Download Persian Version:

https://daneshyari.com/article/6873534

Daneshyari.com


https://daneshyari.com/en/article/6873534
https://daneshyari.com/article/6873534
https://daneshyari.com

