
Future Generation Computer Systems () –

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Active storage networks: Using embedded computation in the
network switch for cluster data processing
Janardhan Singaraju, Ajithkumar Thamarakuzhi, John A. Chandy ∗

Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT, USA

h i g h l i g h t s

• Computation within a network switch accelerates data processing.
• FPGA implementations of modules to process data on the fly through the network.
• Data processing modules include data search, sort, k-min/k-max, and k-means clustering.

a r t i c l e i n f o

Article history:
Received 6 June 2013
Received in revised form
1 October 2014
Accepted 10 October 2014
Available online xxxx

Keywords:
FPGA
Data processing
Active storage

a b s t r a c t

High performance data processing clusters use parallelism to accelerate computation. Often, these com-
putation processes require the transmission of data across networks. In this paper, we propose the use of
computation within the network switch to perform computation on data on the fly and further accelerate
computation. We call networks built with these compute switches Active Storage Networks (ASN) and
they provide an opportunity to optimize storage system and computational performance by offloading
some computation to the network switch. We present an approach to perform transformation and re-
duction data operations in a network switch comprised of FPGAs. In this paper, we demonstrate an ASN
using representative data processing applications, namely data search, data sort, k-min/max, and k-means
clustering.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

High performance computing often requires computations on
large amounts of data that may reside on the cluster computation
nodes or on a separate clustered storage system. In order to op-
erate on this data or simply collect the data after a parallel com-
putation, it will require transmission of data over a network. The
transmission of data across the network provides an opportunity
to do further computation on the data while the data is in transit.
We propose taking advantage of this opportunity by embedding
compute capabilities into the network in order to do computation
on data as it is flowing through the network.

This is the principle behind what we call an active storage net-
work (ASN), a network with embedded computation. The ‘‘active
storage’’ nomenclature is to indicate that the network works in
concert with active storage systems—i.e. computation at the stor-
age node. An ASN can enhance storage node performance as well

∗ Corresponding author.
E-mail address: john.chandy@uconn.edu (J.A. Chandy).

as improve the computational performance of the parallel I/O sys-
tems. In this paper, we illustrate the power of an ASN by perform-
ing data processing in an intelligent switching system which is
built using FPGAs. We demonstrate a few data processing appli-
cations, namely data sort, data search, k-min/max, and k-means
clustering, and show the performance improvements made by of-
floading processing from the computation node to the network by
comparing the application computation time using an ASN with
the computation time when it is performed with a normal switch.

While performing a reduction operation, an ASN switch can
perform the operation at the switch level thereby eliminating
some of the traffic in the network that could consume the client
bandwidth. For example, in a system with 10 storage nodes, if the
clientwants to performanoperation to find theminimumof a large
set of keys stored across these storage nodes, an ASN switch with
some computation capabilities could eliminate 90% of the non-
minimum keys from each node which would be discarded at the
client anyway. This allows the switch to send data to the client at
full line rate even though it receives data from the storage node in
parallel at 10 times the line rate.

As mentioned above, ASNs build upon the active disk con-
cept [1–3]. In active disks, computation can be offloaded from the

http://dx.doi.org/10.1016/j.future.2014.10.020
0167-739X/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2014.10.020
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:john.chandy@uconn.edu
http://dx.doi.org/10.1016/j.future.2014.10.020

2 J. Singaraju et al. / Future Generation Computer Systems () –

Fig. 1. NetFPGA board architecture.

processor to the disk. Previous work has demonstrated the effec-
tiveness of this approach particularly with functions such as stor-
age management, data mining, and multimedia [4]. However, the
drawback of active disks in a distributed storage setting is that the
data is striped across several storage nodes and each processor at
the storage node can only see data residing at that node. Thus, any
computation at the storage node cannot operate on the entire set
of data spread across storage nodes. For example, when doing a
query in a database for the k items closest to a particular key, each
of the m storage nodes will return the k closest items in its por-
tion of the data. The requesting client must then search through
mk items to determine the k closest items overall. The overall com-
putation is O(n) + O(mk) where n is the number of data items per
storage node. In an ASN, the O(mk) search can be offloaded from
the client to the network switch which can perform the search at
line speed. Processing the data as it flows through the network es-
sentially means the computation comes for free, since we have to
pay for that transmission time anyway.

In an ASN, the goal is to move computation to the network
which has a better view of data than the individual storage node,
thereby optimizing network performance. Processing ability on the
network also eases some of the computationalworkload at the net-
work client. Most of the applications that operate on large sets of
data require transforming the data from one form to another. Ex-
amples include file compression, video editing, and data encod-
ing/decoding applications. Offloading data intensive parts of these
applications to the network could ease client computing resources.
It could also reduce network traffic as some of the data transfer op-
erations that read and write data from client to the storage can be
avoided. This further provides the impetus to embed data process-
ing in a network.

As with an active disk model, the ASN is intended to be pro-
grammable. In other words, as the user’s application changes the
ASN could be reprogrammed to implement specific data process-
ing components. In this paper, we present four specific application
kernels, namely data sort, data search, k-min/max, and k-means
clustering. However, the ASN can easily be reconfigured to imple-
ment many other computational kernels that may be found in HPC
applications. One can conceive of a number of possible kernels in-
cluding reduction operations like average, sum, and compression
and transformational operations like FFTs and encryption. A ker-
nel is suitable for implementation in an ASN if the data is stored on
distributed nodes and the kernel either does a large scale reduction
like a search query or does a data transformation such as a sort.

Some other applications that could benefit from the idea of ASN
include redundancy optimizations and file system caching. Par-
allel I/O systems provide data protection through replication and
parity across nodes in the cluster. With the use of an active stor-
age network, the switch can offload parity computations from the
client. Distributed file system performance often depends on ag-
gressive caching to reduce network traffic. However, managing a

Fig. 2. NetFPGA switch pipeline.

cache across multiple clients can be problematic. ASNs offer an op-
portunity to present a global cache shared amongst all clients. By
placing a centralized cache at the switch, we can free up memory
at the client for other purposes. In this paper, we focus on the com-
putational aspects of an ASN.

The rest of the paper is organized as follows: Section 2 de-
scribes the ASN architecture built using the Stanford NetFPGA and
a 2-dilated flattened butterfly (2DFB) switch, Section 3 introduces
some example data processing applications built using the ASN,
and finally we close in Section 4 with an evaluation of the per-
formance improvements made by computing on data within the
network.

2. ASN architecture

A critical component of an ASN is the network switch, since the
switch implements the data processing on data as it is aggregated
and distributed from multiple sources. Typically, custom silicon
is used to build gigabit and multi-gigabit switches and these
switches offer the best performance. While ASICs could be used to
implement the ASN switch, wewould lose the ability to reprogram
the switch for different application needs. Microprocessors offer
programmability but cannot keep up with multi-gigabit speeds in
a switch. FPGAs, on the other hand, provide an intermediate design
point by offering network processing programmability while still
achieving high performance. For this reason, our ASN uses FPGAs
to implement the core network switch.

The ASN switch is built using a NetFPGA board designed by
Stanford University and Digilent Inc., to help build prototypes of
hardware-accelerated networking systems [5].

2.1. NetFPGA

2.1.1. NetFPGA architecture
The NetFPGA is a PCI card that contains a Xilinx Virtex-II Pro

(XC2VP50) FPGA and is specifically designed for network applica-
tions by a research group at Stanford University. It has four 1 Gb/s
Ethernet (GigE) interfaces and two SATA ports which make it suit-
able to build a switching network. It also has four banks of locally-
attached static and dynamic random access memory (SRAM and
DRAM).

Fig. 1 [6] shows the full resources available on the NetFPGA.

2.1.2. Reference switch pipeline
Fig. 2 shows the design of the reference Ethernet switch pro-

vided in the NetFPGA package [5]. It is a five stage pipeline struc-
ture where each module communicates using a simple packet
based synchronous FIFO push interface which makes it easy to
add additional modules to the structure for the purpose of packet

Download	English	Version:

https://daneshyari.com/en/article/6873559

Download	Persian	Version:

https://daneshyari.com/article/6873559

Daneshyari.com

https://daneshyari.com/en/article/6873559
https://daneshyari.com/article/6873559
https://daneshyari.com/

