
Future Generation Computer Systems () –

Contents lists available at SciVerse ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Scheduling highly available applications on cloud environments
Marc Eduard Frîncu ∗

Research Institute e-Austria, Timisoara, Romania
West University of Timisoara, Timisoara, Romania

a r t i c l e i n f o

Article history:
Received 30 October 2011
Received in revised form
3 April 2012
Accepted 17 May 2012
Available online xxxx

Keywords:
Cloud scheduling
Multi-objective scheduling
Meta-heuristics
Nonlinear-programming
High available systems

a b s t r a c t

Cloud computing is becoming a popular solution for storing data and executing applications due to its on-
demand pay-per-use policy that allows access to virtually unlimited resources. In this frame applications
such as those oriented towards Web 2.0 begin to be migrated on cloud systems. Web 2.0 applications
are usually composed of several components that run indefinitely and need to be available to end users
throughout their execution life cycle. Their availability strongly depends on the number of resource
failures and on the variation in user hit rate. These problems are usually solved through scaling. A scaled
application can span its components on several nodes. Hence if one or more nodes fail it could become
unavailable. Thereforewe require amethod of ensuring the application’s functionality despite the number
of node failures. In this paper we propose to build highly available applications, i.e., systems with low
downtimes, by taking advantage of the component based architecture and of the application scaling
property. We present a solution to finding the optimal number of component types needed on nodes
so that every type is present on every allocated node. Furthermore nodes cannot exceed a maximum
threshold and the total running cost of the applications needs to be minimized. A sub-optimal solution
is also given. Both solutions rely on genetic algorithms to achieve their goals. The efficiency of the sub-
optimal algorithm is studied with respect to its success rate, i.e., probability of the schedule to provide
highly available applications in case all but one node fail. Tests performed on the sub-optimal algorithm
in terms of node load, closeness to the optimal solution and success rate prove the algorithm’s efficiency.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Cloud computing has become a popular solution for storing
data and executing applications for many companies due to its
on-demand pay-per-use policy which allows access to virtually
unlimited resources. Public cloud providers such as Amazon,
Google, Microsoft or Rackspace offer access to their data centers by
means of infrastructure (e.g., Amazon EC2 [1], Rackspace cloud [2])
or platform level (e.g., Google App Engine [3], Microsoft Windows
Azure [4]) APIs. There even exist solutions for companies that
wish to create their own cloud systems (e.g., Eucalyptus [5],
OpenStack [6]). For companies as well as for private users choosing
to switch to a cloud based solution does not come without
risks such as network crashes and splits, data center failures or
even security breaches. A key aspect when migrating to cloud
computing is to ensure application availability in case of failures.

For Web 2.0 applications it is essential to minimize the impact
of failures throughout the application’s life cycle and to constantly
monitor and adapt resources to user request rates and failures
through automatic scaling (cf. Section 4).

∗ Correspondence to: West University of Timisoara, Blvd Vasile Parvan, No. 4,
Room 045B, 300223, Timisoara, Romania.

E-mail address:mfrincu@info.uvt.ro.

Web 2.0 applications usually consist of several interlinked com-
ponents (e.g., web servers, databases, application logic modules or
cloudlets [7], and communication servers) which need to scale ac-
cording to user request rates. Due to this modular approach a fur-
ther requirement, especially in case of failures, is to ensure that all
required components execute on the remaining resource nodes.
This guarantees that despite a possible considerable drop in the
applications’s performance, caused by under provisioning or node
failures, the application is still able to handle a certain percent of
the user requests. In this way the application’s ability to handle
large incoming requests is diminished – but not halted – until the
components are scaled back to fit the size of the request rate.

In case of performance drops the average response time
(milliseconds to seconds) increases. This causes some users to
experience long response times and even timeouts. For profit
oriented websites this translates into less profit being made, due
to low page clicks or commercial activities.

We mentioned earlier the notion of availability. In web based
applications this is defined as the ratio between the number of
serviced requests and the total number of requests [8]. It is also
generally expressed in terms of ‘‘number of nines’’: the more
‘‘nines’’ the less denial of service messages in minutes per year [9].
According to Gray et al. [9] High Availability (HA) means an
availability of 99.999%, i.e., 5 min of unavailability per year. High-
availability systems are characterized by fewer failures and faster
repair times.

0167-739X/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2012.05.017

http://dx.doi.org/10.1016/j.future.2012.05.017
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:mfrincu@info.uvt.ro
http://dx.doi.org/10.1016/j.future.2012.05.017

2 M.E. Frîncu / Future Generation Computer Systems () –

Two major issues arise when dealing with scalable and
component based applications that need to be HA. First, as nodes
cost it is undesirable for long running applications to rent extra
resources as in the case of many HA cluster systems that require
N + M nodes to operate (cf. Section 2). Second, as applications
are modular we could end up isolating particular components on
several nodes. In case the hosting nodes fail our application would
experience a drop in its availability while it restarts the failed
resources.

In this paper we propose a solution for these two problems by
introducing a method of placing each application component type
on every needed node. Hence we (1) avoid allocating unnecessary
extra nodes and (2) ensurewith a certain degree of probability that
in case only one node remains the application would still execute
– although at a slower rate – as though all the required component
types were available on it.

The proposed scheduling algorithms consider the method
of scaling to be known a priori and focus on searching for
an optimal allocation of components on nodes in order to
ensure a homogeneous spread of component types on every
node. Numerous current scheduling strategies (cf. Section 2)
assume short-to-medium lived tasks (e.g., bag of tasks,MapReduce
or parameter sweep applications) and ignore the Web 2.0
applications which are inherently long (or infinitely) running.
Despite the apparent simplicity of such schedules it is often the
case that we need to periodically migrate components in order
to optimize node load, minimize communication costs between
nodes and ensure HA.

The rest of the paper is structured as follows: Section3describes
the application model by introducing the mathematical formalism
used throughout the rest of this work. Section 4 presents two
scheduling algorithms for achievingHA in the context of this paper.
We first address the problem of component and node scaling (cf.
Sections 4.1 and 4.2) as they are essential aspects in the proposed
algorithms. Section 4.1.1 deals with the special case in which the
components’ loads are known and gives an optimal solution to the
number of components each node can accommodate. Section 4.2
presents a pro-reactive algorithm for node scaling based on the
user hit rate. Section 4.3 then presents the two algorithms used
to schedule components on nodes and to reactively allocate nodes
if no suitable node exists—i.e., the pro-active algorithm failed to
allot the necessary nodes. The optimal solution can be used in
case the loads of every component are known and is depicted
in Section 4.3.1, while Section 4.3.2 presents the algorithm for
the general case. The model used to measure the success rate of
the proposed algorithms is addressed in Section 4.3.3. Section 5
describes the testing scenarios and includes discussions on the
provided success rate, node load and closeness to the optimal
solution. The paper concludes by reviewing some of the main
achievements of this study (cf. Section 6).

2. Relatedworkonhighavailable systemsand cloud scheduling

The issue of achievingHA systemshas gathered a lot of attention
with work ranging from cluster and grid to utility computing. The
overall problem can be reduced to the problem of placing virtual
machines on a limited physical node so that the number of physical
resources is minimized. This is also known as the bin packing
problem [10] which is known to be NP-hard.

A popular technique towards HA systems is to use virtual
resources that are migrated in case of failures. Several commercial
solutions including VMware [11] and Xen [12] use it but take
opposite approaches: VMware is a reactive solution which restarts
virtual machines on other resources in case of errors. This leads to
temporal delays in the application uptime. Xen on the other hand
uses a proactive method based on monitoring data and migrates

virtual machines before the predicted failure occurs. However this
approach has also a major drawback as failures are difficult to
predict in advance.

For Internet based services solutions include deploying load
balancers which in case one or more servers fail redirect the traffic
to the remaining ones [13–16].

Loveland et al. [17] study how virtualization techniques can
augment HA and propose a simple redundant method for placing
virtual machines on multiple nodes.

Besides migration there are also solutions based on clustering.
Database servers such as MySQL [18] and key value stores like
Amazon’s Dynamo [19] rely on it. In this approach processes are
distributed to replication servers by using DNS Round Robin [18]
or key consistent hashing [19].

One interesting aspect concerning themigration basedmethods
depicted earlier is that they separate the HA from the allocation
problem. This raises an important question regarding their overall
efficiency when virtual machines contain dependent applications.

Some work which considers HA as part of the allocation
algorithm has been done. Recently Machida et al. [20] proposed
an optimal solution for achieving HA systems by using redundant
nodes. The authors also show that for some cases their algorithm
uses less than the N + M nodes needed when classic and simple
approaches such as First-Fit Decrease [21] are used.

Gottumukkala et al. [22,23] propose a reliability-aware alloca-
tion algorithm for achieving HA in large scale computing systems.
In their work they study the possibility of using only reliable nodes
when allocating virtualmachines and show their solution to offer a
greater improvement in terms of waste time and completion time
than the classic Round Robin approach.

All of the previous examples have relied on software to achieve
HA systems, yet hardware solutions exist as well. For instance, in
their work, Aggarwal et al. [24] propose a low-level isolation for
fault containment and reconfiguration for chip multiprocessors.
Their method partitions the chip into multiple failure zones
which can be exploited by redirecting power from failed chip
multiprocessor components to remaining ones.

Our proposed scheduling approach is different from these
strategies in the sense that we address a specific problem
– that of providing HA long running applications – and also
because we operate on top of virtual machines and schedule co-
located application level component processes. In contrast other
approaches – from industry, e.g., Google App Engine [3], IBM
Cloudburst [25]; or from academia, e.g., [20,22] – schedule virtual
machines by asserting that one component instance runs isolated
on its own virtual machine.

Another difference in our approach is that we take advantage
of the inherit scalability property of Web 2.0 based applications
and of the component based (workflow-like) structure of these
applications. Cloud systems rent resources on an hourly basis and
for long running applications this induces regular costs. Therefore
applying traditional solutions which allocate redundant resources
only increases the overall cost. Due to the fact that scalable
applications usually require several components of the same type
to coexist in order to cover the requests a solution would be
to spread the component types homogeneously on every needed
node. In this way we ensure that in case all nodes except one fail
we still have all the application components running. So we do not
only achieve HA without needing extra nodes but also minimize
the actual number of used nodes.

Virtualization is a key aspect in cloud computing as it allows
us to harvest the full potential of the ‘‘unlimited’’ resource pool
of these systems. Since we have already mentioned attempts to
integrate HA with allocation (scheduling) algorithms have been
made. However most scheduling solutions used in the industry
still use simple scheduling heuristics and either offer HA as an

Download English Version:

https://daneshyari.com/en/article/6873585

Download Persian Version:

https://daneshyari.com/article/6873585

Daneshyari.com

https://daneshyari.com/en/article/6873585
https://daneshyari.com/article/6873585
https://daneshyari.com

