
Future Generation Computer Systems () –

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Aligning ontology-based development with service oriented systems
Jun Shen a,∗, Ghassan Beydoun a, Graham Low b, Lijuan Wang a

a School of Information Systems and Technology, University of Wollongong, NSW, Australia
b Australian School of Business, The University of New South Wales, Sydney, NSW, Australia

h i g h l i g h t s

• We proposed an ontology-based development approach for service oriented system.
• We proposed a three layer abstraction of ontology alignment.
• We proposed a semantic integration life cycle for semantic Web services.
• We applied our approach in the building QoS ontology for service and cloud systems.
• We developed multi-agent and peer-to-peer based service system to align ontologies.

a r t i c l e i n f o

Article history:
Received 20 February 2013
Received in revised form
4 July 2013
Accepted 2 August 2013
Available online xxxx

Keywords:
Software development life cycle
Ontologies
Agents
Multi-agent systems
Peer-to-peer systems
Service oriented systems

a b s t r a c t

This paper argues for placing ontologies at the centre of the software development life cycle for distributed
component-based systems and, in particular, for service-oriented systems. It presents an ontology-based
development process which relies on three levels of abstraction using ontologies: architecture layer,
application layer and domain layer. The paper discusses the key roles of ontologies with respect to the
various abstraction layers and their corresponding impact on the concomitant workproducts. In addition,
a peer-to-peer-based service selecting and composing tool is suggested as a way of supporting the
process. The paper presents the architecture of the proposed tool and illustrates the whole process in
the development of a mobile banking application based on dynamic Web services.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

A service oriented architecture (SOA) promotes loose coupling
between components to enable faster and more flexible reconfig-
uration of business processes and provides a means of organising
system resources in an open and flexible arrangement. From an en-
terprise management perspective, the successful delivery of SOA
systems translates into responsive business processes that can
adjust to varying customer service requirements [1,2]. Expected
responsiveness and adjustment is based on leveraging the knowl-
edge of relationships between various services and mixing and
matching groups of services to satisfy new requirements. Service
oriented computing (SOC) has become a convincing paradigm for
enterprises in tackling traditional hurdles to improving the ef-
ficiency and effectiveness of their ubiquitous software applica-
tions [3]. The vice President of Gartner, J. Fenn, predicted that by

∗ Corresponding author. Tel.: +61 2 42213873; fax: +61 2 42214045.
E-mail addresses: jshen@uow.edu.au (J. Shen), beydoun@uow.edu.au

(G. Beydoun), g.low@unsw.edu.au (G. Low), lw840@uowmail.edu.au (L. Wang).

2013, SOA will have delivered transformational results to the role
and capabilities of IT for businesses [4]. Furthermore in 2012, one
third of IT budgets were spent gaining access to services developed
by other vendors [5]. This increased attraction to SOC comes with
the expectation that energies from software development and ac-
quisitionwill be shifted to other business activities, and at the same
time deliver better alignment with business requirements.

Service-oriented software engineering promises to deliver
enormous tangible improvements to enable business processes. In
practice it has been hard to realise, especially for complex applica-
tion systems, when it is advantageous to use services from various
providers. There is a need to find ways to collect available busi-
ness services from the different providers and to specify how such
a collection of services should be combined and integrated seam-
lessly [6]. This ability to easily integrate services can increase flex-
ibility and agility, not only in systems development but also in
business process management. However, existing service compo-
nents do not provide a clear and comprehensive definition of the
business process semantics. Therefore many existing services are
often isolated and opaque to information system developers. Cur-
rent software techniques and tools do not alleviate this and place

0167-739X/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.future.2013.08.005

http://dx.doi.org/10.1016/j.future.2013.08.005
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:jshen@uow.edu.au
mailto:beydoun@uow.edu.au
mailto:g.low@unsw.edu.au
mailto:lw840@uowmail.edu.au
http://dx.doi.org/10.1016/j.future.2013.08.005

2 J. Shen et al. / Future Generation Computer Systems () –

too much burden on developers attempting to reuse existing ser-
vices. This hampers the realisation of the monetary benefits of the
technology and the collective adoption of reuse by the required
large number of players to ensure a critical mass of shared ser-
vices [7].

The use of ontologies can pave the way for an intelligent soft-
ware development environment where developers submit new
business requirements and an automatic tool generates the service
oriented software system. With semantic driven composition, ser-
viceswill be shared between teams of developers and acrossmulti-
ple organisations connected via the Internet. We are acutely aware
that existing Web languages are not easily accessible as described
in Berners-Lee [8]. To overcome this, we aim to provide ontologi-
cal support to the requirements analysis phase to ensure that any
newly created service can be appropriately indexed by a semanti-
cally rich layer of ontologies. There are a number of promises and
arguments around semanticWeb services [9–11], one big issue be-
ing the limited generality of the isolated efforts made by indepen-
dent research groups, for example, as reported in [12]. Indeed, this
paper heeds visionary comments in [13,14] that, in order to meet
the requirements of pervasiveness and autonomy in services de-
velopment, the maturity and awareness of semantic Web and on-
tology technologies (key components of Web 3.0) should not be
overlooked. This research uses an innovative ontology- and agent-
based technology to support the SOA environment by providing
automatic identification andmerging of services whichwill in turn
enable process changes in the business requirements.

The holistic semantic Web driven SOA development approach
will play a significant role in better exploitation of services at both
the technical and business level. This paper is well timed coincid-
ing with the rapid development of Web 2.0 technologies which
enable a single enterprise to use theWeb to offer value-added cus-
tomer services via connection to various services or applications
from other public or commercial organisations. The innovations
in this paper will harness the Web as a support medium for sys-
tems development enabling automatic exchange of services be-
tween various development teams across multiple organisations.
The significance of these innovations is more pronounced coin-
ciding with challenges of dynamic composition of distributed ser-
vices [15] created by the high demand for portable appliances such
as personal digital assistants (PDAs) and next-generation mobile
devices as well as for P2P applications e.g. [16,17]. It is challenging
to apply a hierarchy of ontologies in developing such applications.
For example, concerns remain about how tomeasure the quality of
the ontologies and the alignments among them [18].

This paper proposes an intelligent and supportive software de-
velopment environment where developers can focus on semantic
enrichment of business requirements and proper alignment with
business processes rather than the time consuming task of ser-
vice identification and integration. This paper’s contributions are: a
holistic ontology based development approach for service oriented
systems such Grid and Cloud platforms; a three layer abstraction
of ontology alignment; and the introduction of a semantic integra-
tion life cycle for semanticWeb services. Our proposed approaches
were demonstrated by applying them in the building of quality of
service (QoS) ontology for a service oriented system and develop-
ing amulti-agent, peer-to-peer (P2P) based service system to align
ontologies before tools and illustrating the process in the devel-
opment of a mobile banking application based on dynamic Web
services.

The rest of the paper is organised as follows: Section 2 pro-
vides an argument for placing ontologies at the heart of Software
development life cycle (SDLC) of component-based systems gen-
erally and service oriented development in particular. Section 3
articulates the requirements for an ontology-based service ori-
ented development and the existing supporting ontologies from

the literature. Section 4 discusses the architecture of the intelli-
gent development environment which uses a MAS for peer-based
Web service composition system. A case study highlighting the
ontology-based development of bank loan approval service ori-
ented system is presented in Section 5. Section 6 concludes with
a summary and discussion of future work.

2. Ontology-centric service orientation

It is often a complex task for developers to locate the appro-
priate service components to customise and integrate into their
system. To reduce this cost and to automate much of the service
selection and composition effort, we advocate an ontology-based
approach that uses a semantically enriched representation of ser-
vices and business requirements in order to enhance interoperabil-
ity of services. A domain ontology can facilitate reuse of services
undertaken across different areas (or industries). For example, the
services for certain accounting practices may vary but only slightly
across application areas. Such practices, if well documented us-
ing a domain ontology, can provide reusable services that can be
adapted using appropriate application information. It is fair to say
that the development of any IS system can benefit from a domain
ontology and/or an application ontology with this being most evi-
dent to developers during the analysis phase. Such ontologies may
be available from existing repositories (e.g. [19]) or a domain anal-
ysis yielding an ontology may be considered the first stage of
developing the system (e.g. as proposed in [20] or in [21]). Some
industries such as banking and finance are inclined to provide their
own ontologies to enable speedier IS development.

Unfortunately, only a small number of existing methodologies
include ontologies in their workproducts and processes. This sup-
port is generally confined to the early phases of the development
(the analysis phase). For example, Girardi and Serra specify how
a domain model that includes goal and role analyses is developed
from an initial domain ontology in their methodology [4]. Another
example [22] uses ontologies to mediate the transition between
goal and task analyses. A better inclusion of ontologies into a de-
velopment methodology permits the long term reuse of software
engineering knowledge and effort and can produce reusable
components and designs [23]. But first some of the challenges
discussed in [24,25] need to be addressed. Various software
components have different knowledge requirements and they re-
late to the application domain from various layers of abstraction.
Components may be complementary and they may have varying
degrees of prescription to the domain requiring various degrees of
adjustment to suit the domain. For example, a user interface will
operate at a different level of abstraction to the application do-
main than say a component interfacing to a data mining agent or
a database service. In other words, the degree of linkage between
software components and analysis models depends on the nature
of components themselves and how the components relate to the
system as a whole. An ontology based approach for development
therefore further complicates the analysis activities during devel-
opment. Even if we assume a high degree of independence be-
tween various software components and the application domain,
identifying and appropriately using ontologies in the development
of components remains difficult. Elsewhere, e.g. in [21] the use of
two ontologies, a domain ontology and an application ontology
are advocated to guide the verification of requirement models. In
this paper, we advocate for an additional ontology that describes
the relations between the software components and the way they
are structured in the system. For the development of a service ori-
ented system, the use of this architecture ontology will in turn en-
able proper assumptions to be made with relation to the domain
and application ontologies and how they can be related to service
components. In doing this, we not only identify various roles of an

Download English Version:

https://daneshyari.com/en/article/6873611

Download Persian Version:

https://daneshyari.com/article/6873611

Daneshyari.com

https://daneshyari.com/en/article/6873611
https://daneshyari.com/article/6873611
https://daneshyari.com

