
Future Generation Computer Systems 32 (2014) 324–337

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Parallel processing of large graphs✩

Tomasz Kajdanowicz ∗, Przemyslaw Kazienko, Wojciech Indyk
Wroclaw University of Technology, Poland

h i g h l i g h t s

• We compared three parallel computing techniques in terms of large graph processing.
• MapReduce, map-side join and Bulk Synchronous Parallel tested for two distinct problems.
• Iterative graph processing with the BSP implementation significantly outperforms MapReduce.
• Map-side join design pattern may improve the original MapReduce performance.

a r t i c l e i n f o

Article history:
Received 9 March 2013
Received in revised form
30 July 2013
Accepted 2 August 2013
Available online 28 August 2013

Keywords:
Large graph processing
Parallel processing
Big data
Cloud computing
Collective classification
Shortest path
Networked data
Bulk Synchronous Parallel
MapReduce

a b s t r a c t

More and more large data collections are gathered worldwide in various IT systems. Many of them pos-
sess a networked nature and need to be processed and analysed as graph structures. Due to their size they
very often require the usage of a parallel paradigm for efficient computation. Three parallel techniques
have been compared in the paper: MapReduce, its map-side join extension and Bulk Synchronous Parallel
(BSP). They are implemented for two different graph problems: calculation of single source shortest paths
(SSSP) and collective classification of graph nodes by means of relational influence propagation (RIP). The
methods and algorithms are applied to several network datasets differing in size and structural profile,
originating from three domains: telecommunication,multimedia andmicroblog. The results revealed that
iterative graph processing with the BSP implementation always and significantly, even up to 10 times
outperforms MapReduce, especially for algorithms with many iterations and sparse communication. The
extension of MapReduce based on map-side join is usually characterized by better efficiency compared
to its origin, although not as much as BSP. Nevertheless, MapReduce still remains a good alternative for
enormous networks, whose data structures do not fit in local memories.

© 2013 The Authors. Published by Elsevier B.V. All rights reserved.

1. Introduction

Many technical and scientific problems are related to data with
the networked nature, which can be relatively simply represented
by means of graph structures. Graphs provide a very flexible ab-
straction for describing relationships between discrete objects.
Many practical problems in scientific computing, data analysis and
other areas can be modelled in their essential form by graphs and
solved with the appropriate graph algorithms.

In many environments graph structures are so big that they re-
quire specialized processingmethods, especially parallel ones. This
becomes particularly vital for data collections provided by users
leaving their traces in various online or communication services,

✩ This is an open-access article distributed under the terms of the Creative Com-
mons Attribution-NonCommercial-No Derivative Works License, which permits
non-commercial use, distribution, and reproduction in any medium, provided the
original author and source are credited.
∗ Corresponding author. Tel.: +48 713203609.

E-mail address: tomasz.kajdanowicz@pwr.wroc.pl (T. Kajdanowicz).

such as multimedia publishing portals or social networking sites,
e.g. YouTube or Facebook. Additionally, these datasets reflect vari-
ous user behaviour, so their graph representation may be complex
with multiple relationships linking network nodes. This requires
analytical methods dealing not only with simple graphs but also
hypergraphs or multigraphs.

As graph problems grow larger in scale and more ambitious in
their complexity, they easily outgrow the computation and mem-
ory capacities of single processors. Given the success of parallel
computing in many areas of scientific computing, parallel pro-
cessing appears to be necessary to overcome the resource limi-
tations of single processors in graph computations. Parallel graph
computation is, however, challenging [1] and before the advent of
cloud computing and Hadoop, programmers had to use ill-suited
distributed systems or design their own systems, which required
additional effort to provide fault-tolerance and to address other
problems related to parallel processing [2]. The rise of the MapRe-
duce concept and Hadoop—its open source implementation—
provided researchers with a powerful tool to process large data
collections. Recently, Hadoop has become a de facto standard in

0167-739X/$ – see front matter© 2013 The Authors. Published by Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.future.2013.08.007

http://dx.doi.org/10.1016/j.future.2013.08.007
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2013.08.007&domain=pdf
mailto:tomasz.kajdanowicz@pwr.wroc.pl
http://dx.doi.org/10.1016/j.future.2013.08.007


T. Kajdanowicz et al. / Future Generation Computer Systems 32 (2014) 324–337 325

academia and a significant solution for parallel processing in in-
dustry. It has been used in various areas, including some graph pro-
cessing problems [3].

The MapReduce model is, however, badly suited for iterative
and graph algorithms. There has been a lot of research in creat-
ing design patterns improvingMapReduce performance for graphs
like [4,5], or building systems that would aid iterative processing
on MapReduce [6–10]. Google reacted to that with the develop-
ment of Pregel [2]—an alternative system that implements the Bulk
Synchronous Parallel (BSP) programmingmodel [11] for graphpro-
cessing.

Themain difference in the processing of regular data structures
(tables) and relational models (graphs) relies on different problem
decomposition. Processing table structures is composed of han-
dling of individual records (rows in the table). For the networked
data, single processing of a graph vertex usually requires access to
the neighbourhood of this vertex, which for most algorithms re-
mains fixed for the whole processing time. This data may be either
accessed at every algorithm iteration via a distributed file system
(e.g. HDFS), as in the case of MapReduce, or preserved locally for
the entire processing, the case for BSP.

Both different parallel processing methods, i.e. MapReduce and
BSP, along with the map-side join MapReduce modification, have
been implemented in the Hadoop environment—all three were
used in the experiments presented in this paper. Each approach
was independently applied to solve two distinct graph analytical
problems: single source shortest path (SSSP) calculation and col-
lective classification of network vertices with Relational Influence
Propagation (RIP). The graph algorithms had an iterative nature,
which enabled testing their various parallel implementations in
the following steps. The iterative computation was carried out in
cloud environments containing various numbers of machines to
compare scalability of Bulk Synchronous Parallel and MapReduce.
Additionally, all approaches were tested on several large graph
data sets coming from various domains.

The initial version of the paper was presented at the ICDM 2012
conference [12].

The following Section 2 provides a short state-of-the art study
on graph problem solutions by means of cloud computing. The
main architectures for graph processing, including distributed
memory and shared memory, are presented in Section 3. Two par-
allel processingmodels MapReduce and Bulk Synchronous Parallel
(BSP) are sketched in Section 4. Some discussion on their similari-
ties aswell as potential improvements is provided in Section 5. Also
in this section, an important and experimentally verified MapRe-
duce modification based on map-side join design patterns is pro-
posed for graph processing. Two iterative graph algorithms: single
source shortest path computation and collective classification are
described inmore depth in Section 6. Experimental setup and cloud
environment, including data set profiles can be found in Section 7.
The results of experiments are presented in Section 8. Discussions
on the results and solutions of some problems, which arose dur-
ing research, are depicted in Section 9. The last section, Section 10
contains general conclusions and further directions for work.

2. Related work

The dynamic development of distributed and cloud computing
has led to stable solutions for massive data processing. Nowadays,
there is an intensified focus on new models useful for specific
kinds of processing. On top of distributed storage systems many
solutions dedicated for particular tasks are located, for example
fast random access data, pipeline processing, graph computations,
etc. [13].

There are several concepts for parallel processing in clusters.
Two of them are widely used in offline batch analysis systems
and merit special attention: MapReduce and the less popular Bulk
Synchronous Parallel (BSP). The former is especially very popular
and applied to many real solutions [13].

The general idea behind the Bulk Synchronous Parallel (BSP)
method was first coined and studied in early 90s [11,14]. Recently,
itwas adapted byGoogle to graphprocessing in clouds in the Pregel
system [2]. Pregel’s idea of using BSP for graph processing in clouds
inspired others to create similar systems, some of which are open
source e.g. [15,16].

The overview of large-scale graph engines is presented in [17],
which contains graph systemsdesigned to achieve different goals—
from offline analytics system to online low-latency systems.

An empirical comparison of different paradigms for large-scale
graph processing is presented in [18]. However, the presented
paradigms require a proprietary and/or prototypical platforms,
while, in this paper, we focus on approaches which are available
on Hadoop, a highly popular, open source platform, which can be
run on a set of commodity hardware.

Pace et al. [19] provided a theoretical comparison of BSP and
MapReducemodels. In terms of graph processing, they noticed that
the Breadth First Search algorithm (for the shortest path computa-
tion) cannot be efficiently implemented by means of the MapRe-
duce model. In this paper, we go forward and focus more on an
empirical comparison for the real world data sets, using avail-
able implementations as well as evaluation for an additional graph
problem—collective classification. The general conclusions remain
the same: BSP usually appears to be a better model for solving
graph problems than MapReduce. The results included in this pa-
per provide quantitative analyses supporting that statement.

3. Parallel architectures for graph processing

Regardless of the nature of a particular computational problem
it can be parallelled and scaled well when the overall solution is
balanced in terms of the problem solution, the algorithm express-
ing the solution, the software that implements the algorithm and
hardware. The algorithms, software, and hardware that worked
properly for standard parallel applications are not necessarily ef-
fective for large-scale graph problems. In general, graph problems
have specific properties that make them difficult to fit in existing
distributed computational solutions. Among others, the following
characteristics of graph processing causes challenges in effective
parallel processing [20]:
• Computation driven by relational data. The majority of graph al-

gorithms are executed according to the structure of a graph,
where computation for each next vertex is strictly dependent
on the results calculated for all antecedents. It means that the
algorithm relies on the graph structures rather than on explic-
itly stated sequential processing. This implies that the structure
of the whole computation is not known at the beginning of ex-
ecution and efficient partition is hardly possible.
• Diverse and unbalanced data structures. Usually graph data is

highly unstructured or irregular, which do not give many op-
tions for parallel processing based on partitioning. Additionally,
a skewed distribution of vertex degrees makes scalability diffi-
cult, limiting it to unbalanced computational loads.
• High overload for data access in comparison to computation. Al-

gorithms often explore graphs rather than performing complex
computations on their structure, e.g. the shortest path problem
requires only single arithmetic operations in path cost calcula-
tion but requires the performance of many data queries. Run-
time can be easy dominated by the wait for memory access, not
by computational activities.

Due to the fact that commercially available computer appli-
ances have varying capabilities there can be distinguished several
processing architectures suitable for distinct hardware. Depending
on the amount of available storage and memory for computation
the data might be processed in a different manner, reducing or in-
creasing the latency. There can be distinguished distributed mem-
ory architectures and shared-memory architectures.



Download English Version:

https://daneshyari.com/en/article/6873620

Download Persian Version:

https://daneshyari.com/article/6873620

Daneshyari.com

https://daneshyari.com/en/article/6873620
https://daneshyari.com/article/6873620
https://daneshyari.com

