Future Generation Computer Systems 30 (2014) 14-26

Contents lists available at ScienceDirect 2 = ;
FiGICIS]

Future Generation Computer Systems
journal homepage: www.elsevier.com/locate/fgcs . e

Optimizing convolution operations on GPUs using adaptive tiling

g

@ CrossMark

Ben van Werkhoven **, Jason Maassen ab Henri E. Bal?, Frank J. Seinstra ab

2 Department of Computer Science, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands

b Netherlands eScience Center, Science Park 140, 1098 XG Amsterdam, The Netherlands

HIGHLIGHTS

We present an extensive study of the optimization process of convolutions on GPUs.
Existing optimization techniques are too limited in performance and flexibility.

We present a new optimization for convolutions on GPUs called adaptive tiling.

Our implementation is the best performing one in the spatial domain available to date.

ARTICLE INFO ABSTRACT

Article history:

Received 20 November 2012
Received in revised form

6 August 2013

Accepted 5 September 2013
Available online 16 September 2013

Keywords:

High-performance computing
GPU computing

Parallel applications

GPU clusters

High-level programming models

The research domain of Multimedia Content Analysis (MMCA) considers all aspects of the automated
extraction of knowledge from multimedia data. High-performance computing techniques are necessary
to satisfy the ever increasing computational demands of MMCA applications. The introduction of Graphics
Processing Units (GPUs) in modern cluster systems presents application developers with a challenge.
While GPUs are well known to be capable of providing significant performance improvements, the
programming complexity vastly increases. To this end, we have extended a user transparent parallel
programming model for MMCA, named Parallel-Horus, to allow the execution of compute intensive
operations on the GPUs present in the cluster. The most important class of operations in the MMCA domain
are convolutions, which are typically responsible for a large fraction of the execution time. Existing
optimization approaches for CUDA kernels in general as well as those specific to convolution operations
are too limited in both performance and flexibility. In this paper, we present a new optimization approach,
called adaptive tiling, to implement a highly efficient, yet flexible, library-based convolution operation
for modern GPUs. To the best of our knowledge, our implementation is the most optimized and best

performing implementation of 2D convolution in the spatial domain available to date.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Multimedia Content Analysis (MMCA) investigates methods of
automated knowledge extraction from image, video, and multi-
media data. Research in the domain is driven by emerging ap-
plications, ranging from real-time analysis of video data from
surveillance cameras, to searching digital television archives [1].
The massive amounts of data in such applications makes storing,
cataloging, processing, and retrieving of information a very chal-
lenging task. As a result, high-performance computing is indis-
pensable in the MMCA domain.

It is unrealistic to expect MMCA researchers to also become ex-
perts in high-performance computing. Therefore, it is essential to

* Corresponding author. Tel.: +31205985849.
E-mail addresses: ben@cs.vu.nl (B. van Werkhoven),
j.maassen@esciencecenter.nl (J. Maassen), bal@cs.vu.nl (H.E. Bal),
f.seinstra@esciencecenter.nl (FJ. Seinstra).

0167-739X/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.future.2013.09.003

develop efficient programming models that hide the intrinsic com-
plexities of the underlying computing hardware. In the literature,
a number of such user transparent parallel programming models
have been described (e.g. see [2,3]). These programming models
are based on a software library of pre-parallelized compute kernels
that cover the bulk of all commonly applied MMCA functionality.
Generally, these kernels are designed for data parallel execution on
traditional compute clusters.

Today, many emerging cluster systems are equipped with
Graphics Processing Units (GPUs). Although GPUs are capable of
providing significant performance improvements, programming
complexity vastly increases. As current MMCA programming mod-
els for cluster systems do not incorporate GPUs, only a fraction of
the compute power of modern clusters is exploited. Clearly, there is
a need for easy-to-use and efficient programming models for high-
performance multimedia computing on GPU-equipped cluster sys-
tems.

In this paper, we present an extensively optimized library-
based implementation for convolution operations. Convolutions

http://dx.doi.org/10.1016/j.future.2013.09.003
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2013.09.003&domain=pdf
mailto:ben@cs.vu.nl
mailto:j.maassen@esciencecenter.nl
mailto:bal@cs.vu.nl
mailto:f.seinstra@esciencecenter.nl
http://dx.doi.org/10.1016/j.future.2013.09.003

B. van Werkhoven et al. / Future Generation Computer Systems 30 (2014) 14-26 15

are essential to signal and image processing applications, and
are typically responsible for a large fraction of the application’s
execution time.

This work is part of a larger effort to obtain an implementation
of the Parallel-Horus [4] programming model that allows sequen-
tially written MMCA programs to execute as highly optimized ap-
plications for GPU-clusters without requiring any parallelization
effort from the application programmer. Because 2D convolution
operations can be parallelized over multiple compute nodes sim-
ply by splitting and merging the input and output images across
the nodes, this paper only discusses optimizations within a single
GPU compute node.

This paper provides the following contributions:

e We present an extensive study of the optimization process of 2D
convolution and separable convolution operations on modern
graphics cards.

e We demonstrate that once all the well-known optimization
techniques have been applied, there are many optimizations
still possible.

e We introduce a new optimization approach for implementing
efficient GPU-enabled library-based convolution operations,
called adaptive tiling, which we also combine with loop un-
rolling.

e To the best of our knowledge, our implementation is the most
optimized and best performing implementation of 2D Convolu-
tion in the spatial domain available to date.

We have made the source code of our kernels available from the
first author’s homepage as part of the data-parallel Parallel-Horus
programming model.

The remainder of this paper is organized as follows. Section 2
discusses well-known optimization techniques that have to be ap-
plied to our CUDA kernels before we can apply our own optimiza-
tion approach. Section 3 presents our approach for avoiding shared
memory bank conflicts. Section 4 presents our new optimization
approach called adaptive tiling and discusses the performance im-
provements. Section 5 combines adaptive tiling with loop unrolling
to create our most efficient implementation. Section 6 evaluates
the performance improvements of each optimization step on vari-
ous graphics hardware. Section 7 discusses the limitations that are
inherent to spatial solutions to the 2D convolution problem. Sec-
tion 8 discusses related work and Section 9 and concludes.

2. Naive implementation and well-known optimizations

This section presents a naive CUDA implementation and dis-
cusses existing optimization techniques that form a starting point
for our own optimizations. The discussion of these techniques is
included to present the reader with a complete overview of the
optimization process. Readers with much experience in GPU pro-
gramming and optimization may choose to skip this section. As de-
tailed in Section 8, the implementation approach presented also
improves upon existing work.

In this paper, we continuously report performance results ob-
tained on the Nvidia GTX680 Kepler GPU [5]. Whenever necessary,
we also report results obtained on the GTX480 Fermi GPU [6] and
the Tesla K20 [7], also of the Kepler architecture. The Kepler cards
have significantly more compute cores than the Fermi cards, for
example, 8 SMs of 192 cores (i.e. 1536 cores) for the GTX680
versus 15 SMs of 32 cores (i.e. 480 cores) for the GTX480. The
Kepler cores run at a lower clock frequency to improve energy
efficiency. The respective theoretical peak performance, computed
as cores X frequency x 2, of the GTX480, GTX680, and K20 is 1344.96,
3090.43, and 3519.36 GFLOP/s. The theoretical peak global mem-
ory bandwidth, however, has not scaled up proportionally with
the increased compute performance of the newer cards. The re-
spective theoretical peak global memory bandwidth, computed as

(buswidth x memoryclock)/8, of the GTX480, GTX680, and K20 is
177,192, and 208 GB/s. On the Kepler architecture global memory
loads and stores are only cached in L2 and not in L1. The L1 cache is
reserved for accesses to local memory and register spilling. On the
Fermi architecture, however, global memory loads and stores are
cached in L2 and L1. The caches give an important, yet very hard
to predict, performance boost to the 2D convolution kernels. The
Kepler SMs also have increased space for registers and can support
a higher number of threads executing concurrently per SM. How-
ever, the amount of shared memory per SM on Kepler is exactly the
same as on Fermi, 48KB per SM. While the GTX680 only has 8 SMs,
the K20 has 13, and the GTX480 has 15, therefore, in total the older
GTX480 has even more shared memory than either Kepler card.

In each of our measurements, the kernel performs a 2D convo-
lution of an image of 4096 x 4096 floating point pixels and uses
filter sizes ranging from 3 up to 43 in both dimensions. Using larger
or smaller images influences the total execution time of the opera-
tion, but only has a very limited effect on the performance behavior
of the kernel in terms of GFLOP/s. 3D graphs are used as the perfor-
mance of our 2D convolution implementations often varies in both
dimensions. Some configurations cause performance cliffs, that is
a significant drop in performance occurs when the filter size is in-
creased beyond a certain point.

In image processing, a convolution operation computes a new
value for every pixel based on a weighted average of the original
pixel and the pixels in its neighborhood. These weights are stored
in a convolution filter, which also determines the size of the
neighborhood. To ensure that every pixel can be evaluated (even
at the edge of the image) we assume that the input image includes
a border and is thus larger than the output image.

An implementation in C for the 2D convolution kernel, shown
in Fig. 1(a), uses two loops to iterate over all pixels in the image.
The inner two loops iterate over each pixel in the neighborhood
of the current pixel and compute a weighted average using the
weights stored in the convolution filter. The algorithm takes an
image I of size (I, x I) and a filter F of size (F,, x Fj,)as arguments.
A naive CUDA implementation, shown in Fig. 1(b), is obtained by
creating one CUDA thread for each output pixel. This way, every
CUDA thread computes the weighted average of a single pixel’s
neighborhood and writes a single pixel to the output image. The
input and output images can be padded to multiples of the thread
block width and height, to allow images of any size to be processed
by the kernel.

The first step in the process of optimizing CUDA kernels is en-
suring that the kernel is not global memory bandwidth bound. This
can be easily checked using the Roofline Model [8]. The key idea
behind the roofline model is to calculate the arithmetic intensity
(FLOP/byte ratio) of a kernel and multiply this by the theoretical
peak bandwidth of the device. The result is an estimate of the peak
performance that can be achieved by the kernel. If this exceeds
the theoretical peak performance of the device the kernel is clearly
compute bound, otherwise it is memory bandwidth bound.

The arithmetic intensity of the 2D convolution kernel is calcu-
lated as follows. For every weight in the convolution filter, each
thread loads 2 floating point values, the pixel and the filter weight
making up a total of 8 bytes. These two inputs are multiplied
and added to a local sum, giving an arithmetic intensity of 0.25
FLOP/byte. On a device with no hardware managed caches, the
maximum compute performance of the kernel is computed by
multiplying the memory bandwidth of the device with the arith-
metic intensity of the kernel. However, on devices with hardware
managed caches, many pixel values can be loaded from the cache
as neighboring threads will require the overlapping pixel data.

Rather than relying on the hardware caches to cope with the
high memory bandwidth requirements, parts of the data can be
stored in different device memories. First of all, half of the loads

Download English Version:

https://daneshyari.com/en/article/6873631

Download Persian Version:

https://daneshyari.com/article/6873631

Daneshyari.com

https://daneshyari.com/en/article/6873631
https://daneshyari.com/article/6873631
https://daneshyari.com

