
Future Generation Computer Systems 30 (2014) 66–77

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Accelerating incremental checkpointing for extreme-scale computing
Kurt B. Ferreira a,∗, Rolf Riesen b, Patrick Bridges c, Dorian Arnold c, Ron Brightwell b
a Scalable System Software Department, Sandia National Laboratories, Albuquerque, NM 87185-1319, United States
b IBM Research, Ireland
c Department of Computer Science, University of New Mexico, Albuquerque, NM, United States

h i g h l i g h t s

• We describe a novel incremental checkpointing solution using hashing.
• We examine the performance of this approach with real HPC workloads.
• Wemodel the benefits of this incremental approach for future systems.
• We show that GPUs can dramatically increase hashing speeds.
• However, this increase in speed has little impact on efficiency.

a r t i c l e i n f o

Article history:
Received 14 July 2012
Received in revised form
15 February 2013
Accepted 13 April 2013
Available online 6 May 2013

Keywords:
Fault-tolerance
Checkpointing
Incremental checkpointing
Graphics processing units

a b s t r a c t

Concern is beginning to grow in the high-performance computing (HPC) community regarding the reli-
ability of future large-scale systems. Disk-based coordinated checkpoint/restart has been the dominant
fault tolerancemechanism in HPC systems for the past 30 years. Checkpoint performance is so fundamen-
tal to scalability that nearly all capability applications have customcheckpoint strategies tominimize state
and reduce checkpoint time. One well-known optimization to traditional checkpoint/restart is incremen-
tal checkpointing, which has a number of known limitations. To address these limitations, we describe
libhashckpt, a hybrid incremental checkpointing solution that uses both page protection and hashing
onGPUs to determine changes in application datawith very lowoverhead. Using real capabilityworkloads
and a model outlining the viability and application efficiency increase of this technique, we show that
hash-based incremental checkpointing can have significantly lower overheads and increased efficiency
than traditional coordinated checkpointing approaches at the scales expected for future extreme-class
systems.

© 2013 Published by Elsevier B.V.

1. Introduction

Disk-based coordinated checkpoint/restart has been the dom-
inant fault tolerance mechanism in high performance comput-
ing (HPC) systems for at least the past 30 years. In current large
distributed-memory HPC systems, this approach generally works
as follows: periodically, all nodes quiesce activity, write all appli-
cation and system state to stable storage, and then continue with
computation. In the event of a failure, the stored checkpoints are
read from stable storage to return the application to a previous
known-good state.

Checkpoint performance impacts scalability of large-scale ap-
plications to such a degree that many capability applications have

∗ Corresponding author.
E-mail addresses: kbferre@sandia.gov (K.B. Ferreira), rolf.riesen@ie.ibm.com

(R. Riesen), bridges@cs.unm.edu (P. Bridges), darnold@cs.unm.edu (D. Arnold),
rbbrigh@sandia.gov (R. Brightwell).

their own optimized application-specific checkpoint mechanism to
minimize the saved checkpoint state and therefore the time to
write the checkpoint to stable storage (this time is also referred to
as the checkpoint commit time). While this approach minimizes
the application state that must be written to disk, it requires inti-
mate knowledge of the application’s computation and data struc-
tures, and is typically difficult to generalize to other applications.

One well-known and generalized optimization of traditional
checkpoint/restart is incremental checkpointing. Incremental check-
pointing [1–3] attempts to reduce the size of a checkpoint, and
therefore the checkpoint commit time, by saving only differences
(or deltas) in state from the last checkpoint. The underlying as-
sumption being that the mechanism used to determine the differ-
ences in state has significantly lower overhead than the time to
save the additional data to stable storage.

Current incremental methods have failed to achieve dramatic
decreases in checkpoint size because of a reliance on page
protection mechanisms to determine which address ranges have
been written, or dirtied, during the checkpoint interval [2]. Relying

0167-739X/$ – see front matter© 2013 Published by Elsevier B.V.
http://dx.doi.org/10.1016/j.future.2013.04.017

http://dx.doi.org/10.1016/j.future.2013.04.017
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2013.04.017&domain=pdf
mailto:kbferre@sandia.gov
mailto:rolf.riesen@ie.ibm.com
mailto:bridges@cs.unm.edu
mailto:darnold@cs.unm.edu
mailto:rbbrigh@sandia.gov
http://dx.doi.org/10.1016/j.future.2013.04.017

K.B. Ferreira et al. / Future Generation Computer Systems 30 (2014) 66–77 67

solely on page-basedmechanisms forces such an approach towork
at a granularity of the operating systems page size. Therefore, even
if only one byte in a page is written, the entire page is marked
as dirty and must be saved. Furthermore, if identical values are
written to a location, that page is still marked as dirty. These
problems are compounded by the increasing maximum page sizes
of modern processors and the increased performance for HPC
applications on these larger page sizes.

To address these limitations, we describe a hybrid incremental
checkpointing approach that uses page protection mechanisms,
a hashing mechanism that can be optionally be offloaded to
GPUs if available and idle. GPUs reduce the overhead and
power consumption of the hash calculation. Using real HPC
workloads, this work compares the performance of this technique
against a page protection-based incremental systems and a highly
optimized, application-specific checkpoint technique. Our results
show that our approach is able to dramatically reduce system
checkpoint sizes compared to previous incremental checkpointing
systems; in some cases approaching the checkpoint sizes of hand-
tuned application-specific checkpointing systems. Our results also
show that this technique can significantly improve application
efficiency, with the key performance factor being the amount
of memory compression from the technique (i.e. the size of
the checkpoint file), rather than the speed of the incremental
approach.

This paper is organized as follow. First in Section 2, we define
a model to illustrate when this hash-based approach will pay off
both in comparison to a page-based incremental checkpointing
approach as well as a more traditional, disk-based checkpointing
approach. In Section 3, we describe the design and implementation
of libhashckpt, a previously published [4] incremental check-
pointing library. We show the resulting checkpoint state com-
pression from this technique using a number of real-world HPC
capability workloads in Section 4. In addition, we compare the
compression results against an optimal application-based check-
pointing mechanism. In Section 5, using a number of hash algo-
rithms, we show the costs of performing this hashing on a CPU
versus the speedup seen using a GPU. Section 6 uses the aforemen-
tioned model and measured results to present the viability of this
technique using a GPU and CPU for possible systems in the exascale
design space thereby defining under which situations we would
use this approach. In Section 7 we outline the increase in applica-
tion efficiency in those scenarios where the approach is viable. Re-
lated checkpoint optimization work is discussed in Section 8. We
conclude with a discussion of the implications of this work as well
as ongoing research in Section 9.

2. A model for the viability of hash-based incremental check-
pointing

To evaluate the viability of this method we compare the perfor-
mance of this hash-based mechanism first against that of a strictly
page-based approach. This hash-based approach outperforms a
page-based approachwhen the reduction in the checkpoint size for
the hashmethodoutweighs the cost of computing the hashes of the
modified pages. More specifically, this approach is viable when the
sum of the time to hash modified memory (Thash), plus the time to
write the application blocks that have been determined changed
(Twrite hash), is less than the time to write the memory that hash
been determined changed using a strictly page-based approach
(Twrite whole). This model was first introduced by Plank et al. in [5].
For clarity we provide it here. In more detail we have:

Thash + Twrite hash < Twrite whole (1)
|c|

βhash


+


(1 − α) × |c|

βckpt


<

|c|
βckpt

(2)

where:

|c| is the size of page-based checkpoint
α is the percent reduction of hash-based approach in compar-

ison to the page-based method
βhash is the per-process hash rate
βckpt is the per-process checkpoint commit rate.

This equation can be reduced to:

βckpt

βhash
< α. (3)

The maximum per-process checkpoint commit rate (βckpt) is
generally known for many HPC platforms. Therefore, we must
measure the hashing rate (βhash), which is specific to both a specific
platform and hashing algorithm; and the compression percentage
(α), which will be specific to a particular application. In the
next section, we use the libhashckpt library to measure these
quantities.

2.1. Viability against coordinated checkpointing

In this section we outline the viability of this hash-based
technique in comparison to traditional checkpoint restart. Similar
to above, this approach is viable when the sum of the time to hash
modified memory (Thash), plus the time to write the application
blocks that have been determined changed (Twrite hash), plus the
time to mark dirty pages during a checkpoint interval (Tdirty), is
less than the time to write thememory that hash been determined
changed using a strictly page-based approach (Twrite whole). Again
we have:

Thash + Twrite hash + Tdirty < Twrite whole (4)
|c|

βhash


+


(1 − α) × |c|

βckpt


+ Tdirty <

|c|
βckpt

. (5)

As we will show in later sections, for checkpoint intervals
expected on future systems, Tdirty is equal to 0. Therefore, this
equation again reduces down to:

βckpt

βhash
< α. (6)

The same as Eq. (3). Therefore, the viability of this approach
is the same in comparison to both a page-based incremental
approach and a traditional checkpoint/restart mechanism.

3. Libhashckpt: hash-based incremental checkpointing

3.1. Overview

This work uses a previously published incremental checkpoint
library called libhashckpt [4]. The hash-based incremental
checkpointing mechanisms in libhashckpt works as follows.
While the application is running, the library uses the page-
protection mechanism (i.e. mprotect()) to mark those virtual
memory pages that have been written in the checkpoint interval
as potentially dirty. To support MPI applications, the library
must also intercept all receive calls, including those implicit
to collective operations which use buffers internal to the MPI
library. libhashckptmarks all receive message buffers as dirty,
identifying them as candidates to be checked by the hashing
mechanism. These message buffers require marking as changes
in memory from high-performance, user-level network hardware,
such as those found on leadership-class HPC systems, are not
subject to the processor’s page protection mechanisms. Therefore,

Download English Version:

https://daneshyari.com/en/article/6873639

Download Persian Version:

https://daneshyari.com/article/6873639

Daneshyari.com

https://daneshyari.com/en/article/6873639
https://daneshyari.com/article/6873639
https://daneshyari.com

