
Future Generation Computer Systems 30 (2014) 179–190

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Efficient multi-keyword ranked query over encrypted data in
cloud computing
Ruixuan Li a,∗, Zhiyong Xu b, Wanshang Kang a, Kin Choong Yow c, Cheng-Zhong Xu c,d

a School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
b Department of Mathematics and Computer Science, Suffolk University, Boston, MA 02114, USA
c Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong 518055, China
d Department of Electrical and Computer Engineering, Wayne State University, Detroit, MI 48202, USA

h i g h l i g h t s

• Design a novel storage and encryption algorithm to manage the keyword dictionary.
• Greatly reduce both the dictionary reconstruction overhead and the file index re-encryption time as new keywords and files are added.
• Design a novel trapdoor generation algorithm.
• Take the keyword access frequencies into account when the system generates the ranked list of the returning results.

a r t i c l e i n f o

Article history:
Received 31 December 2012
Received in revised form
24 June 2013
Accepted 28 June 2013
Available online 17 July 2013

Keywords:
Cloud computing
Multi-keyword query
Ranked query
Top-k query
Data encryption
Privacy preserving

a b s t r a c t

Cloud computing infrastructure is a promising new technology and greatly accelerates the development
of large scale data storage, processing and distribution. However, security and privacy become major
concerns when data owners outsource their private data onto public cloud servers that are not within
their trusted management domains. To avoid information leakage, sensitive data have to be encrypted
before uploading onto the cloud servers, which makes it a big challenge to support efficient keyword-
based queries and rank the matching results on the encrypted data. Most current works only consider
single keyword queries without appropriate ranking schemes. In the current multi-keyword ranked
search approach, the keyword dictionary is static and cannot be extended easily when the number of
keywords increases. Furthermore, it does not take the user behavior and keyword access frequency into
account. For the query matching result which contains a large number of documents, the out-of-order
ranking problemmay occur. This makes it hard for the data consumer to find the subset that is most likely
satisfying its requirements. In this paper,wepropose a flexiblemulti-keywordquery scheme, calledMKQE
to address the aforementioned drawbacks. MKQE greatly reduces the maintenance overhead during the
keyword dictionary expansion. It takes keyword weights and user access history into consideration when
generating the query result. Therefore, the documents that have higher access frequencies and thatmatch
closer to the users’ access history get higher rankings in the matching result set. Our experiments show
that MKQE presents superior performance over the current solutions.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Cloud computing is getting more andmore attention from both
academic and industry communities as it becomes amajor deploy-
ment platformof distributed applications, especially for large-scale
data management systems. End users can outsource their personal
data onto public clouds, and then access the data at anytime and
anywhere. In the cloud environment, the resources allocated for

∗ Corresponding author.
E-mail address: rxli@hust.edu.cn (R. Li).

each application can be scaled up and down according to the fluc-
tuating demand. It adopts a pay-per-use resource sharing model,
which allows a user to pay only for the number of service units
it consumes. Cloud computing infrastructure provides a flexible
and economic strategy for datamanagement and resource sharing.
It can reduce hardware, software costs and system maintenance
overheads. It can also offer a convenient communication channel
to share resources across data owners and data consumers. With
the popularity of cloud services, such as Amazon Web Services,1

1 Amazon web services, http://aws.amazon.com.

0167-739X/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.future.2013.06.029

http://dx.doi.org/10.1016/j.future.2013.06.029
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2013.06.029&domain=pdf
mailto:rxli@hust.edu.cn
http://aws.amazon.com
http://dx.doi.org/10.1016/j.future.2013.06.029


180 R. Li et al. / Future Generation Computer Systems 30 (2014) 179–190

Microsoft Azure,2 Apple iCloud,3 Google AppEngine,4 more and
more companies are planning to move their data onto the cloud.

Despite of its advantages, the cloud computing infrastructure
faces very challenging tasks, especially on data privacy, security
and reliability issues. The fact is that private data are now placed
on public clouds which are out of their trusted domains in cloud
computing. Data owners do not have direct control over their
sensitive data and are increasingly worrying about possible data
loss and/or illegal use of their private data. Usually, cloud servers
are considered as curious and untrusted entities. Data owners
will hesitate to adopt cloud technologies if there are risks of data
exposure to a third party or even the cloud service provider itself.
Therefore, providing sufficient security and privacy protections
on sensitive data is extremely important, especially for those
applications dealing with health, financial and government data.

Some approaches have been proposed to evaluate cloud com-
puting security and introduce a ‘‘trusted third party’’ to assure se-
curity characteristics within a cloud environment, such as [1,2]. To
prevent information disclosure, the mainstream solution is to en-
crypt private data before uploading it onto the cloud server. On one
hand, this approach ensures that the data are not visible to external
users and cloud administrators. On the other hand, there are se-
vere processing limitations on encrypted data. For example, stan-
dard plain text based searching algorithms are not applicable any
more. To perform a keyword-based query, the entire data set has to
be decrypted even if the matching result set is very small. It poses
unbearable query latency and incurs unacceptable computational
overhead.

To solve this issue, current solutions use the following strat-
egy to provide keyword-based searching capabilities on encrypted
data. First, a set of keywords are defined. An index vector is calcu-
lated for each file. It maintains the information of which keywords
this file contains. After constructing the index vectors, an index file
that combines all the index vectors is generated. The index file has
to be encrypted as well. Second, both the encrypted data and index
files are uploaded onto the data center servers in the cloud. Now,
the data are ready to accept queries from the data consumers. The
cloud servers can then support cipher text based queries as fol-
lows. A data consumer submits a keyword-based query, and the
encrypted keywords are sent to the cloud server. The cloud server
conducts a search on the encrypted index and returns a list of
most relevant files. The user makes the decision that which files
are needed and retrieves them from the server. After receiving en-
crypted files, the user decrypts the files with the associated key.
This approach can guarantee the data security and preserve the
data privacy. During the whole process, no plain text data or key-
words are visible to the cloud servers.

Although substantial research works, such as [3–5], have been
done to study keyword-based queries on encrypted data, many
of them only address single keyword queries. Others use disjunc-
tive or conjunctive searches formulti-keyword querieswhich have
great limitations in flexibility and performance. Furthermore, few
of them offer the ranking algorithm for matching results. MRSE [6]
is the first and latest work to define such a multi-keyword ranked
query problem, and proposes a viable solution to address it. In
MRSE, all keywords are stored in a dictionary and a certain key-
word can always be identified by its location in the dictionary.
MRSE has two randomly generated invertiblematrices for data and
file index encryption operations. It uses the inner product of two

2 Microsoft azure, http://www.windowsazure.com.
3 Apple icloud, https://www.icloud.com/.
4 Google appengine, https://appengine.google.com/.

vectors to build the trapdoor for secure keyword queries. It also ap-
plies an internal ranking algorithm to determine the top k files to
be returned to the data consumer.

However, this approach suffers from three major drawbacks.
First, it uses a static dictionary. If new keywords to be added, the
dictionary has to be rebuilt completely which leads to substantial
computational overhead. Second, an out-of-order problem occurs
if using its trapdoor generation algorithm. Such a problem brings
the result that the files with more matching keywords are likely
excluded from the top k positions in the matching set. This means
that the data consumer may not be able to find the most relevant
files they want. Lastly, MRSE does not consider the effects of
keyword weight and access frequencies. Therefore, the files that
contain frequent keywords might not be included in the top k
locations in the returning result at all.

In this paper, we design a new strategy called MKQE to address
the aforementioned issues. In MKQE, we assume that the amount
of data continues to increase from time to time. Accordingly, the
keyword dictionary has to be expanded periodically. We propose a
new dictionary construction paradigm, introduce a new trapdoor
generation algorithm to reduce the query latencies, and take
the keyword access frequencies into consideration to generate
better matching result sets. In summary, we make the following
contributions.

• We introduce partitioned matrices in the system design. The
keyword dictionary can be expanded dynamically without
touching the contents in the original dictionary. We design the
novel storage and encryption algorithm tomanage the keyword
dictionary. MKQE greatly reduces both the dictionary recon-
struction overhead and the file index re-encryption time as new
keywords and files are added.
• We design a novel trapdoor generation algorithm. It can effec-

tively reduce the impacts of dummy keywords on the ranking
scores. With this new strategy, the out-of-order problem in the
matching result set is solved.
• We take the keyword access frequencies into account when the

system generates the ranked list of the returning results. Be-
sides, we add the weights of the keywords in the index file.
The fileswhich containmore frequently accessed keywordswill
have higher weights in the query. The files with higher weights
will have higher probabilities to appear in the first k locations of
the matching result set. Hence, the data consumers have better
chances to retrieve the desired files easily.

The rest of the paper is organized as follows. Section 2 de-
fines the problem. Section 3 discusses current research works in-
cluding MRSE and its drawbacks. Section 4 presents the system
overview and the technical details of the proposed MKQE solu-
tion. Section 5 discusses the correctness and privacy-preserving
analysis. Section 6 describes the experimental configurations and
performance evaluations. Section 7 introduces the related works.
Finally, Section 8 concludes the paper and gives the future work.

2. Problem definition

We aim to design a new approach to improve the performance
for multi-keyword ranked queries on encrypted data in public
cloud servers. In this section, we will introduce the notations and
define the problem.

2.1. Notations

• F : the set of original files, assuming there are m files. F is
denoted as F = (F1, F2, F3 . . . Fm).
• C: the set of encrypted files, corresponding to the files in F . C is

denoted as C = (C1, C2, C3 . . . Cm).

http://www.windowsazure.com
https://www.icloud.com/
https://appengine.google.com/


Download English Version:

https://daneshyari.com/en/article/6873669

Download Persian Version:

https://daneshyari.com/article/6873669

Daneshyari.com

https://daneshyari.com/en/article/6873669
https://daneshyari.com/article/6873669
https://daneshyari.com

