
Future Generation Computer Systems 30 (2014) 191–201

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

A topology-aware load balancing algorithm for clustered hierarchical
multi-core machines
Laércio L. Pilla a,b,∗, Christiane P. Ribeiro b, Pierre Coucheney b, François Broquedis b,
Bruno Gaujal b, Philippe O.A. Navaux a, Jean-François Méhaut b
a Instituto de Informática – Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500. 91501-970, Porto Alegre, Brazil
b Université de Grenoble – Laboratoire d’Informatique de Grenoble – UJF – CNRS – INRIA – INP – CEA, 51 avenue Jean Kuntzmann, 38330,
Montbonnot-Saint-Martin, France

h i g h l i g h t s

• We propose a topology-aware load balancing algorithm for multi-core machines.
• The algorithm is demonstrated to converge asymptotically to the optimal solution.
• Wemodel distances among hardware components in terms of latency and bandwidth.
• Topology-aware load balancing algorithm shows scalable performance over 256 cores.

a r t i c l e i n f o

Article history:
Received 30 December 2012
Received in revised form
16 May 2013
Accepted 17 June 2013
Available online 3 July 2013

Keywords:
Load balancing
Hierarchical architectures
Hardware topology
Proof of optimality
Benchmarking

a b s t r a c t

In this paper, we present a topology-aware load balancing algorithm for parallel multi-core machines
and its proof of asymptotic convergence to an optimal solution. The algorithm, named HwTopoLB,
aims to improve the application performance by reducing core idleness and communication delays.
HwTopoLB was designed taking into account the properties of current parallel systems composed of
multi-core compute nodes, namely their network interconnection, and their complex and hierarchical
core topology. The latter comprises multiple levels of cache, and a memory subsystem with NUMA
design. These systems provide high processing power at the expense of asymmetric communication
costs, which can hamper the performance of parallel applications depending on their communication
patterns if ignored. Our load balancing algorithm models asymmetries in terms of latencies and
bandwidths, representing the distances and communication costs amonghardware components.Wehave
implemented HwTopoLB using the Charm++ Parallel Runtime System and evaluated its performance
with two different benchmarks and one application. Our experimental results with HwTopoLB exhibit
scalability over clusteredmulti-core compute nodes, and average performance improvements of 23% over
execution without load balancers and 19% over the existing load balancing strategies on different multi-
core systems.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Parallel systems composed of multi-core compute nodes re-
quire the use of parallel programming languages and environ-
ments to explore their processing power. Such programming
languages provide a way to decompose an application into tasks,
threads, and processes, and to distribute them over available cores.
Nevertheless, an initial work distribution may not achieve the ex-

∗ Corresponding author at: Instituto de Informática –Universidade Federal do Rio
Grande do Sul, Avenida Bento Gonçalves 9500. 91501-970, Porto Alegre, Brazil. Tel.:
+55 5499736313.

E-mail addresses: llpilla@inf.ufrgs.br, pilla@imag.fr (L.L. Pilla).

pected performance and efficiency due to applications’ dynamic
and irregular characteristics.

In these scientific applications, the load of each task and their
number may depend on input data. Their load may also vary be-
tween timesteps. Examples are: molecular dynamics simulations,
where atoms move in space through simulated timesteps; and
weather forecasting models, where incidence of rain can increase
the computational load of some tasks. The resulting load imbalance
leads to sub-optimal performance.

Load balancing strategies can be used during the application
execution to improve the distribution of tasks. Such strategies try
to find a new task distribution thatmaximizes core usage by taking
into account the tasks’ execution times. Still, this work distribution

0167-739X/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.future.2013.06.023

http://dx.doi.org/10.1016/j.future.2013.06.023
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2013.06.023&domain=pdf
mailto:llpilla@inf.ufrgs.br
mailto:pilla@imag.fr
http://dx.doi.org/10.1016/j.future.2013.06.023


192 L.L. Pilla et al. / Future Generation Computer Systems 30 (2014) 191–201

may not provide optimal performance due to communication
overheads from the design of current multi-core systems.

The increasing number of cores in parallel compute nodes de-
mands an efficient memory and cache hierarchy design, as mul-
tiple cores compete for resources to access shared memory. In
this context, current architectures use multiple levels of shared
cache memories and a non-uniform memory access (NUMA) de-
sign. This introduces a complex topology and hierarchical memory
sub-system with asymmetric latencies and bandwidths. These af-
fect application communication and its performance [1]. Addition-
ally, the network interconnection presents its own asymmetries.
Therefore, to attain scalable performance on parallel systems, it be-
comes necessary to take into account the communication costs be-
tween hardware components when load balancing.

In this scenario, we propose a novel load balancing approach
for parallelmulti-core systems.We combine information about the
machine topology with statistics about the application (i.e. work-
load and communication patterns) to ensure that no core will be
underutilized due to unbalance of the tasks being executed. More-
over, this approach is used to reduce the costs of communica-
tion through memory and network. Based on this approach, we
designed a centralized topology-aware load balancing algorithm
namedHardware Topology Load Balancer, orHwTopoLB. This algo-
rithm is proven to asymptotically converge to an optimalmapping,
as we demonstrate in Theorem 1.HwTopoLBwas first presented in
our previous work [2], where its machine topologymodel was lim-
ited to sharedmemorymachines andmemory latency only, and its
performance evaluation was based only on the benchmarks. The
main contributions of the current paper are as follows:

• we propose a machine topology model for clustered multi-
core compute nodes that represents communication costs as
latencies and bandwidths.
• we present in details a load balancing algorithm that combines

our machine topology model with profiled information about
the application.
• we provide the proof of its asymptotic convergence to the

optimal solution.
• we evaluate its effectiveness with benchmarks and one

application over different parallel machines. Its performance
and scalability are compared to other load balancers.

We implemented HwTopoLB using the Charm++ parallel
runtime system for this evaluation. Charm++ provides a load
balancing framework with statistics of the application profiled
during runtime [3,4]. The experiments show that the proposed load
balancing algorithm achieves average performance improvements
of 23% over the execution without load balancers and of 19% over
other load balancers.HwTopoLB also exhibits a better scalability on
experiments with up to 256 cores distributed on 8 interconnected
multi-core compute nodes.

The remainder of this paper is organized as follows: Section 2
discusses related work. We describe the proposed load balancing
algorithm in Section 3. Its implementation is discussed in Section 4.
In Section 5, we outline the experimental methodology used in the
evaluation presented in Section 6. Concluding remarks and future
work are presented in Section 7.

2. Related work

The hierarchical design of current parallel systems and the
complexity of parallel applications have demanded efficient task
mapping algorithms. For that purpose, extensive research has been
done on schedulers, load balancers, and work-stealing algorithms.
Efforts usually focus on one of two contexts: (i) among compute
nodes, or (ii) inside multi-core compute nodes. We split the state
of the art in these two categories.

2.1. Network topology optimizations

Research in a network level focuses on reducing network con-
tention, distributing work among compute nodes (but not directly
among their cores), and avoiding task migration overheads by
moving tasks among nearby compute nodes, where the locality is
related to the number of hops between two nodes.

Zheng et al. [4] studied the performance and scalability of differ-
ent periodic load balancers on Charm++ [3]. The authors presented
two greedy algorithms, a refinement-based algorithm named Re-
fineLB, and a two-level hierarchical algorithm. Among them, only
one greedy algorithm considers the communication patterns of the
application, and none considers the machine topology. Their re-
sults show that: (i) centralized algorithms tend to reduce the most
the duration of application timesteps; (ii) refinement-based and
hierarchical algorithms provide better scalability by reducing load
balancing overheads; and (iii) the hierarchical approach signifi-
cantly reduces the memory footprint of a load balancer.

Lifflander, Krishnamoorthy and Kale [5] demonstrated the use
of periodic load balancing on MPI applications. They also applied
work stealing [6,7] in the same scenario. The authors developed a
threaded active message library over MPI which enables the use
of medium grain tasks. They presented two load balancing algo-
rithms: one similar toRefineLB [4], and one hierarchical algorithm.
In the latter, cores are organized in a tree and send their small-
est tasks to their immediate parents in case of imbalance. Their vi-
sion of locality is related to the tree organization only, as it does
not consider metrics such as latency and bandwidth. Additionally,
both algorithms do not consider the application’s communication
graph. Their work on distributed work stealing involved stealing
tasks from random cores, and keeping one work queue per core.
Since the applications considered are iterative, tasks stolen by a
core are kept by it in an effort to reduce the migration overhead.

Bhatele et al. [8] researched the influence of topology-aware
load balancing algorithms on NAMD [9], a molecular dynamics
application. Their study focused on static and dynamic topology-
aware mappings on large scale parallel machines with 3D mesh
and torus topologies. Their results showed performance improve-
ments of up to 10% on NAMD. The metric used for the evaluation
was hop-bytes, which is based on the total number of bytes ex-
changed between processors weighted by the distance between
them.

Hoefler and Snir [10] studied the problem of mapping applica-
tionswith irregular communication patterns to the network topol-
ogy. They evaluated the effect of different heuristics, and proposed
a library to provide automated topology mapping. The communi-
cation pattern of the MPI application and the network topology
are statically gathered. Topologymapping is done by re-numbering
processes in theMPI communicator. Results with the simulation of
real parallel systems showed reductions of network congestion by
up to 80% and average dilation by up to 50%, while results on 512
compute nodes of a BlueGene/P system showed performance im-
provements between 10% and 18%. The network bandwidth is con-
sidered by their algorithms, but the bandwidth inside one compute
one is accounted as unbound.

Catalyurek et al. [11] use hypergraph partitioning to balance
the load of dynamic applications using the Zoltan toolkit [12].
They focus on improving communication performance while load
balancing by reducing the communication volume among cores
and avoiding task migrations. The application is represented as
a hypergraph, where vertices are tasks, and nets (hyperedges)
represent communication and migrations costs. Communication
and migration costs are computed using the amount of bytes a
task communicates and contains, respectively. Still, these costs do
not take into consideration the machine topology. Their approach
involves a graph coarsening phase, a recursive bisection phase,



Download English Version:

https://daneshyari.com/en/article/6873671

Download Persian Version:

https://daneshyari.com/article/6873671

Daneshyari.com

https://daneshyari.com/en/article/6873671
https://daneshyari.com/article/6873671
https://daneshyari.com

