
Future Generation Computer Systems 30 (2014) 202–215

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

A memory access model for highly-threaded
many-core architectures✩

Lin Ma ∗, Kunal Agrawal, Roger D. Chamberlain
Department of Computer Science and Engineering, Washington University in St. Louis, United States

h i g h l i g h t s

• We design a memory model to analyze algorithms for highly-threaded many-core systems.
• The model captures significant factors of performance: work, span, and memory accesses.
• We show the model is better than PRAM by applying both to 4 shortest paths algorithms.
• Empirical performance is effectively predicted by our model in many circumstances.
• It is the first formalized asymptotic model helpful for algorithm design on many-cores.

a r t i c l e i n f o

Article history:
Received 25 January 2013
Received in revised form
14 May 2013
Accepted 17 June 2013
Available online 15 July 2013

Keywords:
PRAM
TMM
All Pairs Shortest Paths (APSP)
Highly-threaded many-core
Memory access model

a b s t r a c t

A number of highly-threaded, many-core architectures hide memory-access latency by low-overhead
context switching among a large number of threads. The speedupof a programon thesemachines depends
on how well the latency is hidden. If the number of threads were infinite, theoretically, these machines
could provide the performance predicted by the PRAM analysis of these programs. However, the number
of threads per processor is not infinite, and is constrained by both hardware and algorithmic limits. In
this paper, we introduce the Threaded Many-core Memory (TMM) model which is meant to capture the
important characteristics of these highly-threaded,many-coremachines. Sincewemodel some important
machine parameters of these machines, we expect analysis under this model to provide a more fine-
grained and accurate performance prediction than the PRAM analysis. We analyze 4 algorithms for the
classic all pairs shortest paths problem under this model. We find that even when two algorithms have
the same PRAM performance, our model predicts different performance for some settings of machine
parameters. For example, for dense graphs, the dynamic programming algorithm and Johnson’s algorithm
have the same performance in the PRAM model. However, our model predicts different performance
for large enough memory-access latency and validates the intuition that the dynamic programming
algorithm performs better on these machines. We validate several predictions made by our model
using empirical measurements on an instantiation of a highly-threaded, many-core machine, namely the
NVIDIA GTX 480.

© 2013 The Authors. Published by Elsevier B.V. All rights reserved.

1. Introduction

Highly-threaded, many-core devices such as GPUs have gained
popularity in the last decade; both NVIDIA and AMD manufac-
ture general purpose GPUs that fall in this category. The important
distinction between these machines and traditional multi-core
machines is that these devices provide a large number of low-
overhead hardware threads with low-overhead context switching

✩ This is an open-access article distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and source are credited.
∗ Corresponding author. Tel.: +1 3144986029.

E-mail address: lin.ma@cse.wustl.edu (L. Ma).

between them; this fast context-switchmechanism is used to hide
the memory access latency of transferring data from slow large
(and often global) memory to fast, small (and typically local) mem-
ory. Researchers have designed algorithms to solve many inter-
esting problems for these devices, such as GPU sorting or hashing
[1–4], linear algebra [5–7], dynamic programming [8,9], graph al-
gorithms [10–13], andmanyother classic algorithms [14,15]. These
projects generally report impressive gains in performance. These
devices appear to be here to stay. While there is a lot of folk wis-
dom on how to design good algorithms for these highly-threaded
machines, in addition to a significant body of work on performance
analysis [16–20], there are no systematic theoretical models to an-
alyze the performance of programs on these machines. We are
interested in analyzing and characterizing performance of algo-

0167-739X/$ – see front matter© 2013 The Authors. Published by Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.future.2013.06.020

http://dx.doi.org/10.1016/j.future.2013.06.020
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2013.06.020&domain=pdf
mailto:lin.ma@cse.wustl.edu
http://dx.doi.org/10.1016/j.future.2013.06.020


L. Ma et al. / Future Generation Computer Systems 30 (2014) 202–215 203

rithms on these highly-threaded, many-core machines in a more
abstract, algorithmic, and systematic manner.

Theoretical analysis relies upon models that represent under-
lying assumptions; if a model does not capture the important as-
pects of target machines and programs, then the analysis is not
predictive of real performance. Over the years, computer scientists
have designed various models to capture important aspects of the
machines that we use. The most fundamental model that is used
to analyze sequential algorithms is the Random Access Machine
(RAM) model [21], which we teach undergraduates in their first
algorithms class. This model assumes that all operations, includ-
ing memory accesses, take unit time. While this model is a good
predictor of performance on computationally intensive programs,
it does not properly capture the important characteristics of the
memory hierarchy of modern machines. Aggarwal and Vitter pro-
posed theDisk AccessMachine (DAM)model [22]which counts the
number of memory transfers from slow to fast memory instead of
simply counting the number of memory accesses by the program.
Therefore, it better captures the fact that modern machines have
memory hierarchies and exploiting spatial and temporal locality
on these machines can lead to better performance. There are also a
number of other models that consider the memory access costs of
sequential algorithms in different ways [23–29].

For parallel computing, the analogue for the RAM model is the
Parallel Random Access Machine (PRAM) model [30], and there is
a large body of work describing and analyzing algorithms in the
PRAMmodel [31,32]. In the PRAMmodel, the algorithm’s complex-
ity is analyzed in terms of its work – the time taken by the algo-
rithm on 1 processor, and span (also called depth and critical-path
length) – the time taken by the algorithm on an infinite number
of processors. Given a machine with P processors, a PRAM algo-
rithm with work W and span S completes in max(W/P, S) time.
The PRAM model also ignores the vagaries of the memory hierar-
chy and assumes that each memory access by the algorithm takes
unit time. Formodernmachines, however, this assumption seldom
holds. Therefore, researchers have designed various models that
capture memory hierarchies for various types of machines such as
distributed memory machines [33–35], shared memory machines
and multi-cores [36–40], or the combination of the two [41,42].

All of thesemodels capture particular capabilities andproperties
of the respective target machines, namely shared memory ma-
chines or distributed memory machines. While superficially
highly-threaded, many-core machines such as GPUs are shared
memorymachines, their characteristics are very different from tra-
ditional multi-core or multiprocessor shared memory machines.
The most important distinction between the multi-cores and
highly-threaded, many-core machines is the number of threads
per core. On multi-core machines, context switch cost is high, and
most models nominally assume that only one (or a small constant
number of) thread(s) are running on each machine and this thread
blocks when there is a memory access. Therefore, many models
consider the number of memory transfers from slow memory to
fast memory as a performance measure, and algorithms are de-
signed tominimize these, sincememory transfers take a significant
amount of time. In contrast, highly-threaded, many-coremachines
are explicitly designed to have a large number of threads per core
and a fast context switching mechanism. Highly-threaded many-
cores are explicitly designed to hide memory latency; if a thread
stalls on a memory operation, some other thread can be sched-
uled in its place. In principle, the number ofmemory transfers does
not matter as long as there are enough threads to hide their latency.
Therefore, if there are enough threads, we should, in principle, be
able to use PRAM algorithms on such machines, since we can ig-
nore the effect of memory transfers which is exactly what PRAM
model does.

However, the number of threads required to reach the point
where one gets PRAM performance depends on both the algorithm

Fig. 1. Throughput of Bloom filter algorithm for set membership testing on
biosequence data. Performance (in membership tests per second) is plotted
vs. number of threads per processor both for a Tesla C1060 and a GTX 480 GPU.

and the hardware. Since no highly-threaded, many-core machine
allows an infinite number of threads, it is important to understand
both (1) how many threads does a particular algorithm need to
achieve PRAM performance, and (2) how does an algorithm per-
form when it has fewer threads than required to get PRAM perfor-
mance? In this paper, we attempt to characterize these properties
of algorithms. To motivate this enterprise and to understand the
importance of high thread counts on highly-threaded, many-core
machines, let us consider a simple application that performs Bloom
filter set membership tests on an input stream of biosequence data
onGPUs [3]. The problem is embarrassingly parallel, each setmem-
bership test is independent of every other membership test. Fig. 1
shows the performance of this application, varying the number of
threads per processor core, for two distinct GPUs. For both ma-
chines, the pattern is quite similar, at low thread counts, the per-
formance increases (roughly linearly) with the number of threads,
up until a transition region, after which the performance no longer
increases with increasing thread count. While the location of the
transition region is different for distinct GPU models, this general
pattern is found in many applications. Once sufficient threads are
present, the PRAM model adequately describes the performance
of the application and increasing the number of threads no longer
helps.

In this work, we propose the Threaded Many-core Memory
(TMM) model that captures the performance characteristics of
these highly-threaded, many-core machines. This model explicitly
models the large number of threads per processor and thememory
latency to slow memory. Note that while we motivate this
model for highly-threadedmany-coremachineswith synchronous
computations, in principle, it can be used in any system which
has fast context switching and enough threads to hide memory
latency. Typical examples of such machines include both NVIDIA
and AMD/ATI GPUs and the YarcData uRiKA system. We do not try
to model the Intel Xeon Phi, due to its limited use of threading for
latency hiding. In contrast, its approach to hide memory latency
is primarily based on strided memory access patterns associated
with vector computation.

If the latency of transfers from slow memory to fast memory is
small, or if the number of threads per processor is infinite, then
this model generally provides the same analysis results as the
PRAManalysis. It, however, providesmore intuition. (1) Ideally, we
want to get the PRAMperformance for algorithms using the fewest



Download	English	Version:

https://daneshyari.com/en/article/6873673

Download	Persian	Version:

https://daneshyari.com/article/6873673

Daneshyari.com

https://daneshyari.com/en/article/6873673
https://daneshyari.com/article/6873673
https://daneshyari.com/

