
Future Generation Computer Systems 30 (2014) 229–241

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Improving execution unit occupancy on SMT-based processors
through hardware-aware thread scheduling
Achille Peternier ∗, Danilo Ansaloni, Daniele Bonetta, Cesare Pautasso, Walter Binder
University of Lugano (USI), Via G. Buffi 13, 6904 Lugano, Switzerland

h i g h l i g h t s

• We present WorkOver to improve thread-scheduling for better performance.
• We use performance counters to profile integer- and floating-point threads.
• Threads are scheduled according to hardware execution unit availability.
• WorkOver optimizes unit occupancy on AMD Bulldozer and IBM P7 processors.
• Wemeasured up to 20% speedup using Spec CPU and Scimark 2.0.

a r t i c l e i n f o

Article history:
Received 12 January 2013
Received in revised form
16 May 2013
Accepted 17 June 2013
Available online 1 July 2013

Keywords:
Multicore
Simultaneous multithreading
Workload profiling
Performance
Thread scheduling

a b s t r a c t

Modern processor architectures are increasingly complex and heterogeneous, often requiring software
solutions tailored to the specific hardware characteristics of each processor model. In this article, we
address this problem by targeting two processors featuring Simultaneous MultiThreading (SMT) to
improve the occupancy of their internal executionunits through a sustained streamof instructions coming
from more than one thread. We target the AMD Bulldozer and IBM POWER7 processors as case studies
for specific hardware-oriented performance optimizations that increase the variety of instructions sent
to each core to maximize the occupancy of all its execution units. WorkOver, presented in this article,
improves thread scheduling by increasing the performance of floating point-intensive workloads on
Linux-based operating systems. WorkOver is a user-space monitoring tool that automatically identifies
FPU-intensive threads and schedules them in a more efficient way without requiring any patches
or modifications at the kernel level. Our measurements using standard benchmark suites show that
speedups of up to 20% can be achieved by simply allowingWorkOver tomonitor applications and schedule
their threads, without any modification of the workload.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Since the power wall [1] prevents hardware manufacturers
from increasing the processor’s clock frequency, modern CPUs em-
bed several cores to increase the computational power through
parallelism. Recent trends show that hardware manufacturers
are preferring asymmetry and heterogeneity over symmetric and
homogeneous designs. Indeed, current state-of-the-art proces-
sors have very complex architectures featuring multiple internal
components, such as multiple cache levels shared among differ-
ent cores, Non-Uniform Memory Access (NUMA) [2] controllers
and hyperlinks, Simultaneous MultiThreading (SMT) support with

∗ Corresponding author. Tel.: +41 0 76 460 38 37.
E-mail addresses: achille.peternier@gmail.com, achille.peternier@usi.ch

(A. Peternier), danilo.ansaloni@usi.ch (D. Ansaloni), daniele.bonetta@usi.ch
(D. Bonetta), cesare.pautasso@usi.ch (C. Pautasso), walter.binder@usi.ch
(W. Binder).

several Processing Units (PUs) per core, or ad hoc dedicated units.
As a consequence, it is increasingly difficult for software devel-
opers to fully exploit the underlying hardware’s computational
power, as optimal software configurations can vary according to
the hardware platform, to the application software architecture,
and to the type of workload.

The Operating System (OS) kernel and scheduler try to optimize
the performance of applications depending on the available hard-
ware resources. To this end, OS schedulers rely on a limited set of
performance indicators (such as the number of cores, CPU time,
and memory usage) to drive their optimization strategies. This is
often not enough for multithreaded applications running on mod-
ern systems, where the complexity and the specific character-
istics of the underlying hardware architecture require to use
additional information to improve runtime performance through
efficient scheduling.

As a case study, in this article we focus on two of these modern
architectures andwepresent a specific, hardware-aware optimiza-
tion tool based on (1) an automated workload analysis technique

0167-739X/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.future.2013.06.015

http://dx.doi.org/10.1016/j.future.2013.06.015
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2013.06.015&domain=pdf
mailto:achille.peternier@gmail.com
mailto:achille.peternier@usi.ch
mailto:danilo.ansaloni@usi.ch
mailto:daniele.bonetta@usi.ch
mailto:cesare.pautasso@usi.ch
mailto:walter.binder@usi.ch
http://dx.doi.org/10.1016/j.future.2013.06.015


230 A. Peternier et al. / Future Generation Computer Systems 30 (2014) 229–241

(a) Inefficient allocation: one thread per PUs without considering the number of FPUs. Only 4 FPUs are
used: each thread shares 2 FPUs with another thread.

(b) Optimal allocation: one FPU-intensive thread per core. All the 8 available FPUs are used: each
thread uses 2 dedicated FPUs.

Fig. 1. Inefficient vs optimal scattering of 4 floating point-intensive threads on a AMD Bulldozer processor.

relying on a specific set of performance metrics that are currently
not used by common OS schedulers, and (2) a hardware-aware
optimized scheduler performing scheduling decisions based on
hardware resource usage monitoring. Our goal is to use a
controller-based approach to profile the workload of multi-
threaded and multi-process applications to improve the efficiency
of how they share heterogeneous resources.

We focus on two modern micro-architectures that imple-
ment very different SMT solutions: the AMD Bulldozer and IBM
POWER7 processors. These architectures are good representatives
of modern hardware platforms with specific characteristics that
cannot easily be exploited by non-hardware-aware approaches. In
this context, one of the peculiar characteristics of the Bulldozer
architecture is the design of an asymmetric SMT implementation
between integer and floating point units, where Floating Point pro-
cessing Units (FPUs) are shared by two PUs within one same core:
two threads may contend for the same FPU units (while integer
units are available on a per-PU basis). The IBM POWER7 architec-
ture is based on a more aggressive implementation of SMT, where
the instructions coming from up to four threads can be sched-
uled simultaneously to improve the occupancy of the available ex-
ecution units on each core. Since each core features two integer
and four floating point units, only a proper scheduling of integer-
and floating point-intensive threads can take advantage of this im-
proved SMT, otherwise these hardware layouts can have a negative
impact on the performance of FPU-intensive workloads.

Our approach is named WorkOver (after Workload Overseer)
and corresponds to a Linux daemon that interacts with the OS
scheduler to improve the thread scheduling of floating point-
intensive workloads on SMT processors by taking into account the
way hardware execution units are organized into cores and PUs.

WorkOver runs in user-space and is based on performancemet-
rics commonly available without anymodification of the OS kernel
and the monitored applications. Our workload profiling approach
relies on hardware performance counters to detect which threads
make floating point-intensive computations. Our performance op-
timization is based on improved thread scheduling by pinning the
most FPU-intensive threads to PUs of different cores to reduce
contention on shared execution units. In this way, WorkOver pro-
vides a transparent bottom-up optimization mechanism, based on

(1) automatic workload profiling at runtime through performance
counters and (2) hardware-aware dynamic allocation of resources.
No further intervention is required, neither to modify the running
application (theworkload) nor to change theOS scheduler. The tool
is a system-wide user-mode daemon collecting information and
applying optimization policies on the threads spawned by applica-
tions (processes) that have been started with a special command.

This article extends our work presented in [3] by generalizing
the approach from a specific CPUmodel to generic SMT processors
and by using two completely different hardware architectures and
OSs to validate our generalized approach.

2. Motivation and approach

Many scientific applications make heavy use of floating
point-intensive computations. Consider a scenario in which
a multithreaded application performs floating point-intensive
computations with variable intensity in all or a subset of its
threads. A common OS scheduler would assign FPU-intensive
threads to the available SMT units for execution, as it would do
for any other application. The scheduler takes metrics such as CPU
time consumption into account. However, prevailing schedulers
included in most OS distributions do not consider the way the ex-
ecuted workload is using the hardware resources.

On modern architectures, it makes a significant difference to
schedule threads by taking into account the characteristics of the
underlying hardware. For simplicity, let us assume that a mul-
tithreaded application with 8 running threads has a subset of 4
threads performing FPU-intensive operations. The execution of
such application on an AMD Bulldozer four-core processor with
2 PUs on each core (thus seen as a processor with 8 PUs in to-
tal) could potentially result in an inefficient use of computing re-
sources. If the OS scheduler scatters the 4 floating point threads to
4 PUs used by two cores (see Fig. 1a), the total number of FPUs used
will be 50% less than when the same 4 threads are scheduled one
per core (Fig. 1b).

This scenario can be even more detrimental to performance
when it happens on a IBM POWER7 four-core processor with 4



Download English Version:

https://daneshyari.com/en/article/6873677

Download Persian Version:

https://daneshyari.com/article/6873677

Daneshyari.com

https://daneshyari.com/en/article/6873677
https://daneshyari.com/article/6873677
https://daneshyari.com

