

Available online at www.sciencedirect.com

ScienceDirect

Fuzzy Information and Engineering

http://www.elsevier.com/locate/fiae

ORIGINAL ARTICLE

Implications on a Lattice

B. Jagadeesha · S.P. Kuncham · B.S. Kedukodi

Received: 22 February 2015 / Revised: 10 March 2016/

Accepted: 14 June 2016/

Abstract In this paper, we study S-implication operator and QL-operation on a lattice L. We tabulate properties of S-implication and QL-operation with respect to different triangular norms and negations. We study properties of S-implication and QL-operation on uniquely complemented and orthocomplemented lattice.

Keywords Lattice · Implication · t-norm · t-conorm · Ideal © 2016 Fuzzy Information and Engineering Branch of the Operations Research Society of China. Hosting by Elsevier B.V. All rights reserved.

1. Introduction

Fuzzy implication operators were introduced to generalize classical implication operators. Bustince, Burillo and Soria [10] studied automorphism, negations and presented different implication operators. Baczynski and Jayaram [4] characterized (S,N)-implications on [0, 1]. Baczynski and Jayaram [5] made a survey of (S,N) and R-implications on [0, 1] and studied their properties. Cornelis, Deschrijver and Kerre [11] introduced implication operators in intuitionstic fuzzy set theory and interval valued fuzzy set theory. Reiser, Dimuro, Bedregal, Santos and Bedregal [27] defined S-implication on a complete lattice. Davvaz [13] obtained implication of fuzzy R-subgroup of a nearring with thresholds. Yang [29] studied fuzzy weak regular,

email: jagadeesh1_bhat@yahoo.com

syamprasad.k@manipal.edu

babushrisrinivas.k@manipal.edu

Peer review under responsibility of Fuzzy Information and Engineering Branch of the Operations Research Society of China.

@ 2016 Fuzzy Information and Engineering Branch of the Operations Research Society of China. Hosting by Elsevier B.V. All rights reserved.

This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

B. Jagadeesha (\boxtimes) · S.P. Kuncham (\boxtimes) · Corresponding Author: B.S. Kedukodi (\boxtimes)

Department of Mathematics, Manipal Institute of Technology, Manipal University, Manipal, Karnataka 576104, India

strong pre-associative filters. Ajmal and Jahan [1] characterized normal L-subgroup of an L-group using an L-point. Fotea, Feng and Zhan [16] introduced fuzzy hypergroups. Mandal and Ranadive [26] obtained rough intuitionistic fuzzy substructures of fuzzy subring and studied their properties under homomorphism. Kedukodi, Kuncham and Bhavanari [21] introduced c-prime fuzzy ideals of nearrings. Kedukodi, Kuncham and Bhavanari [22], [23] studied equiprime, 3-prime and c-prime fuzzy ideals of nearrings and proposed reference point based rough set model. Tiwari, Sharan and Yadav [28] obtained relation between fuzzy rough sets, fuzzy closure spaces and fuzzy topology. Ajmal and Jahan [2] studied nilpotency of L-Subgroups of an L-Group. Bertoluzza, Doldi [7] studied distributivity between t-norms and t-conorms. Deschrijver [14] studied different representations of t-norms in interval valued fuzzy set theory. Jagadeesha, Kedukodi and Kuncham [19] introduced interval valued (i-v) L-fuzzy ideals on a lattice L by concurrently using a pair of t-norms and t-conorms. Kuncham, Kedukodi and Jagadeesha [25] studied properties of interval valued Lfuzzy ideals under homomorphism. Kedukodi, Jagadeesha and Kuncham [20] defined drastic t-norm and drastic t-conorm on a lattice using the properties of an ideal and a filter of a lattice. The drastic t-norm generalizes drastic product and drastic t-conorm generalizes drastic sum on [0, 1]. In this paper, we study S-implication and QL-operation on a complete bounded lattice and tabulate their properties with respect to different negations, t-norms and t-conorms. We study properties of S-implications on a uniquely complemented and orthocomplemented lattice.

2. Preliminaries

In this paper, $L = \langle L, \wedge_L, \vee_L \rangle$ is a complete bounded lattice with a greatest element M and a least element $m \leq_L$ denotes the partial order in L. We refer to Gratzer [17], Klement, Mesiar and Pap [24], Davvaz [12], Bhavanari and Kuncham [8], Bhavanari, Kuncham, Kedukodi [9] for more details on the topics involved in this paper.

Definition 2.1 [18] A t-norm is a function $T: L \times L \to L$ such that $\forall x, y, z \in L$ following axioms are satisfied:

- 1) Commutativity: T(x, y) = T(y, x),
- 2) Associativity: T(x, T(y, z)) = T(T(x, y), z),
- 3) Monotonicity: If $y \le_L z$, then $T(x, y) \le_L T(x, z)$,
- 4) Boundary condition: T(x, M) = x.

A t-norm T on L is called an idempotent t-norm if $T(x, x) = x \ \forall \ x \in L$.

Definition 2.2 [6] A t-conorm is a function $C: L \times L \to L$, such that $\forall x, y, z \in L$ following axioms are satisfied:

- 1) Commutativity: C(x, y) = C(y, x),
- 2) Associativity: C(x, C(y, z)) = C(C(x, y), z),
- 3) Monotonicity: If $y \leq_L z$, then $C(x, y) \leq_L C(x, z)$,

Download English Version:

https://daneshyari.com/en/article/6873737

Download Persian Version:

https://daneshyari.com/article/6873737

<u>Daneshyari.com</u>