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Proofs of proximity are proof systems wherein the verifier queries a sublinear number of 
bits, and soundness only asserts that inputs that are far from valid will be rejected. In 
their minimal form, called MA proofs of proximity (MAP), the verifier receives, in addition 
to query access to the input, also free access to a short (sublinear) proof. A more general 
notion is that of interactive proofs of proximity (IPP), wherein the verifier is allowed to 
interact with an omniscient, yet untrusted prover.
We construct proofs of proximity for two natural classes of properties: (1) context-free 
languages, and (2) languages accepted by small read-once branching programs. Our main 
results are:

1. MAPs for these two classes, in which, for inputs of length n, both the verifier’s query 
complexity and the length of the MAP proof are Õ (

√
n).

2. IPPs for the same two classes with constant query complexity, poly-logarithmic 
communication complexity, and logarithmically many rounds of interaction.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The field of property testing, initiated by Rubinfeld and Sudan [1] and Goldreich, Goldwasser and Ron [2], studies a 
computational model that consists of probabilistic algorithms, called testers, that need to decide whether a given object has 
a certain global property or is far (say, in Hamming distance) from all objects that have the property, based only on a local 
view of the object.

A line of work [3–9] has considered the question of designing proof systems within the property testing model. The 
minimal type of such a proof system, which was recently studied by Gur and Rothblum [7], augments the property testing 
framework by replacing the tester with a verifier that receives, in addition to oracle access to the input, also free access to

✩ This research was partially supported by the Israel Science Foundation (grant No. 671/13). The research was conducted while the second and third 
authors were students at the Weizmann Institute.

* Corresponding author.
E-mail addresses: oded.goldreich@weizmann.ac.il (O. Goldreich), tom.gur@berkeley.edu (T. Gur), ronr@csail.mit.edu (R.D. Rothblum).

https://doi.org/10.1016/j.ic.2018.02.003
0890-5401/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.ic.2018.02.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
mailto:oded.goldreich@weizmann.ac.il
mailto:tom.gur@berkeley.edu
mailto:ronr@csail.mit.edu
https://doi.org/10.1016/j.ic.2018.02.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2018.02.003&domain=pdf


176 O. Goldreich et al. / Information and Computation 261 (2018) 175–201

an explicitly given short (i.e., sub-linear length) proof. The guarantee is that for inputs that have the property there exists 
a proof that makes the verifier accept with high probability, whereas, for inputs that are far from the property, the verifier 
will reject every alleged proof with high probability. These proof systems can be thought of as the NP (or more accurately 
MA) analogue of property testing, and are called Merlin–Arthur proofs of proximity (MAP).1

A more general notion was considered by Rothblum, Vadhan and Wigderson [6] (prior to [7]). Their proof system, which 
can be thought of as the IP analogue of property testing, consists of an all powerful (but untrusted) prover who interacts 
with a verifier that only has oracle access to the input x. The prover tries to convince the verifier that x has a particular 
property �. Here, the guarantee is that for inputs in �, there exists a prover strategy that will make the verifier accept 
with high probability, whereas for inputs that are far from �, the verifier will reject with high probability no matter what 
prover strategy is employed. The latter proof systems are known as interactive proofs of proximity (IPPs).2

The focus of this paper is identifying natural classes of properties that are known to be hard to test, but become easy to 
verify using the power of a proof (MAP) or interaction with a prover (IPP).

1.1. Our results

One well-known class of properties that is hard to test is the class of context-free languages. Alon et al. [10] showed that 
there exists a context-free language that requires � 

(√
n
)

queries to test (where here and throughout this work, n denotes 
the size of the input) and a context-free language that requires �(n) queries to test with one-sided error. Furthermore, there 
are no known (non-trivial) testers for general context-free languages.

Another interesting class is the class of languages that are accepted by small read-once branching programs (ROBPs). New-
man [11] showed that the set of strings accepted by any small width ROBP can be efficiently tested.3 More specifically, 
Newman showed that width w ROBPs can be tested using (2w/ε)O (w) queries, where ε is the proximity parameter. Bol-
lig [12] showed that Newman’s result cannot be extended to polynomial-sized ROBPs, by exhibiting an O (n2)-sized ROBP 
that requires �(

√
n) queries to test. No (non-trivial) testers for general ROBPs are known for width �(

√
log n).

In this work we consider the question of constructing efficient MAPs and IPPs for these two classes.4 Here, by 
“efficient”, we mean that both the query complexity (i.e., the number of queries performed by the verifier to the input) and 
the proof complexity (i.e., the length of the MAP proof) or communication complexity (i.e., the amount of communication 
with the IPP prover) are small and, in particular, sub-linear.5

Our first pair of results are efficient MAPs for context-free languages and for ROBPs. These MAPs offer a multiplica-
tive trade-off between the query and proof complexities. Here and throughout this work, n ∈ N specifies the length of the 
main input and ε ∈ (0, 1) denotes the proximity parameter.

Theorem 1.1. For every context-free language L and every k = k(n) such that 2 ≤ k ≤ n, there exists an MAP for L that uses a proof 
of length O (k · log n) and has query complexity O  

(n
k · ε−1

)
. Furthermore, the MAP has one-sided error.

Theorem 1.2. If a language L is recognized by a size s = s(n) ROBP, then for every k = k(n) such that 2 ≤ k ≤ n, there exists an MAP
for L that uses a proof of length O (k · log s) and has query complexity O  

(n
k · ε−1

)
. Furthermore, the MAP has one-sided error.

Hence, by setting k = √
n, every context-free language and every language accepted by an ROBP of size at most 2polylog(n) , 

has an MAP in which both the proof and query complexity are Õ
(√

n
)

(w.r.t. constant proximity parameter).
Next, we ask whether the query and proof complexity in Theorems 1.1 and 1.2 can be significantly reduced by allowing 

more extensive interaction between the verifier and the prover (i.e., arbitrary interactive communication rather than just 
a fixed non-interactive proof). Very relevant to this question is a recent result of [6] by which, loosely speaking, every 
language in NC (which contains all context-free languages [15] and languages accepted by small ROBPs6) has an IPP
with Õ (

√
n) query and communication complexities. While the [6] result is more general, for context-free languages and 

ROBPs it achieves roughly the same query and communication complexities as the MAPs in Theorems 1.1 and 1.2, but 
uses much more interaction (i.e., at least logarithmically many rounds of interaction compared to just a single message in 
our MAPs).

1 A related notion is that of a probabilistically checkable proof of proximity (PCPP) [4,5]. PCPPs differ from MAPs in that the verifier is only given 
query (i.e., oracle) access to the proof, whereas in MAPs, the verifier has free (explicit) access to the proof. Hence, PCPPs are a PCP analogue of 
property testing.

2 Indeed, MAPs can be thought of as a restricted case of IPPs, in which the interaction is limited to a single message sent from the prover to the 
verifier.

3 The result in [11] is stated only for oblivious ROBPs but in [12, Section 1.3] it is stated that Newman’s result holds also for general non-oblivious ROBPs.
4 To see that these two classes do not contain each other, observe that the language {0i1 j 2i 3 j : i, j ≥ 1}, which is not a context-free language [13, 

Example 7.20], has a poly(n)-width ROBP (which simply counts the number of repeated occurrences of 0, 1, 2 and 3). On the other hand, Kriegal and 
Waack [14] showed that every ROBP for the Dyck2 language, which is a context-free language, has size 2�(n) .

5 As pointed out in [7], if we do not restrict the length of the proof, then every property � can be verified trivially using only a constant amount of 
queries, by considering an MAP proof that contains a full description of the input.

6 See Appendix B for a discussion on why languages accepted by ROBPs can be computed in small depth.
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