Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

Proofs of proximity for context-free languages and read-once branching programs ^{*}

Oded Goldreich^a, Tom Gur^{b,*}, Ron D. Rothblum^c

^a Weizmann Institute, Israel

^b UC Berkeley, CA, USA

^c MIT and Northeastern University, MA, USA

A R T I C L E I N F O

Article history: Received 27 May 2015 Available online 9 February 2018

Keywords: Property testing Probabilistic proof systems Interactive proofs

ABSTRACT

Proofs of proximity are proof systems wherein the verifier queries a sublinear number of bits, and soundness only asserts that inputs that are far from valid will be rejected. In their minimal form, called *MA proofs of proximity* (\mathcal{MAP}), the verifier receives, in addition to query access to the input, also free access to a short (sublinear) proof. A more general notion is that of *interactive proofs of proximity* (\mathcal{TPP}), wherein the verifier is allowed to interact with an omniscient, yet untrusted prover.

We construct proofs of proximity for two natural classes of properties: (1) context-free languages, and (2) languages accepted by small read-once branching programs. Our main results are:

- 1. MAPs for these two classes, in which, for inputs of length *n*, both the verifier's query complexity and the length of the MAP proof are $\widetilde{O}(\sqrt{n})$.
- 2. *IPPs* for the same two classes with constant query complexity, poly-logarithmic communication complexity, and logarithmically many rounds of interaction.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The field of property testing, initiated by Rubinfeld and Sudan [1] and Goldreich, Goldwasser and Ron [2], studies a computational model that consists of probabilistic algorithms, called *testers*, that need to decide whether a given object has a certain global property or is far (say, in Hamming distance) from all objects that have the property, based only on a local view of the object.

A line of work [3–9] has considered the question of designing *proof systems* within the property testing model. The minimal type of such a proof system, which was recently studied by Gur and Rothblum [7], augments the property testing framework by replacing the tester with a *verifier* that receives, in addition to oracle access to the input, also free access to

* Corresponding author.

https://doi.org/10.1016/j.ic.2018.02.003 0890-5401/© 2018 Elsevier Inc. All rights reserved.

 $^{^{*}}$ This research was partially supported by the Israel Science Foundation (grant No. 671/13). The research was conducted while the second and third authors were students at the Weizmann Institute.

E-mail addresses: oded.goldreich@weizmann.ac.il (O. Goldreich), tom.gur@berkeley.edu (T. Gur), ronr@csail.mit.edu (R.D. Rothblum).

an explicitly given short (i.e., sub-linear length) proof. The guarantee is that for inputs that have the property there exists a proof that makes the verifier accept with high probability, whereas, for inputs that are far from the property, the verifier will reject *every* alleged proof with high probability. These proof systems can be thought of as the NP (or more accurately MA) analogue of property testing, and are called *Merlin–Arthur proofs of proximity* (MAP).¹

A more general notion was considered by Rothblum, Vadhan and Wigderson [6] (prior to [7]). Their proof system, which can be thought of as the \mathcal{IP} analogue of property testing, consists of an all powerful (but untrusted) prover who interacts with a verifier that only has oracle access to the input *x*. The prover tries to convince the verifier that *x* has a particular property Π . Here, the guarantee is that for inputs in Π , there exists a prover strategy that will make the verifier accept with high probability, whereas for inputs that are far from Π , the verifier will reject with high probability no matter what prover strategy is employed. The latter proof systems are known as *interactive proofs of proximity* (\mathcal{IPPs}).²

The focus of this paper is identifying natural classes of properties that are known to be hard to test, but become easy to *verify* using the power of a proof (MAP) or interaction with a prover (IPP).

1.1. Our results

One well-known class of properties that is hard to test is the class of *context-free languages*. Alon et al. [10] showed that there exists a context-free language that requires $\Omega(\sqrt{n})$ queries to test (where here and throughout this work, *n* denotes the size of the input) and a context-free language that requires $\Omega(n)$ queries to test with *one-sided error*. Furthermore, there are no known (non-trivial) testers for general context-free languages.

Another interesting class is the class of languages that are accepted by small *read-once branching programs (ROBPs)*. Newman [11] showed that the set of strings accepted by any small width ROBP can be efficiently tested.³ More specifically, Newman showed that width *w* ROBPs can be tested using $(2^w/\varepsilon)^{O(w)}$ queries, where ε is the proximity parameter. Bollig [12] showed that Newman's result cannot be extended to polynomial-sized ROBPs, by exhibiting an $O(n^2)$ -sized ROBP that requires $\Omega(\sqrt{n})$ queries to test. No (non-trivial) testers for general ROBPs are known for width $\Omega(\sqrt{\log n})$.

In this work we consider the question of constructing *efficient* MAPs and IPPs for these two classes.⁴ Here, by "efficient", we mean that *both* the *query complexity* (i.e., the number of queries performed by the verifier to the input) and the *proof complexity* (i.e., the length of the MAP proof) or *communication complexity* (i.e., the amount of communication with the IPP prover) are small and, in particular, sub-linear.⁵

Our first pair of results are efficient MAPs for context-free languages and for ROBPs. These MAPs offer a multiplicative trade-off between the query and proof complexities. Here and throughout this work, $n \in \mathbb{N}$ specifies the length of the main input and $\varepsilon \in (0, 1)$ denotes the proximity parameter.

Theorem 1.1. For every context-free language \mathcal{L} and every k = k(n) such that $2 \le k \le n$, there exists an \mathcal{MAP} for \mathcal{L} that uses a proof of length $O(k \cdot \log n)$ and has query complexity $O(\frac{n}{k} \cdot \varepsilon^{-1})$. Furthermore, the \mathcal{MAP} has one-sided error.

Theorem 1.2. If a language \mathcal{L} is recognized by a size s = s(n) ROBP, then for every k = k(n) such that $2 \le k \le n$, there exists an \mathcal{MAP} for \mathcal{L} that uses a proof of length $O(k \cdot \log s)$ and has query complexity $O(\frac{n}{k} \cdot \varepsilon^{-1})$. Furthermore, the \mathcal{MAP} has one-sided error.

Hence, by setting $k = \sqrt{n}$, every context-free language and every language accepted by an ROBP of size at most $2^{\text{polylog}(n)}$, has an \mathcal{MAP} in which both the proof and query complexity are $O(\sqrt{n})$ (w.r.t. constant proximity parameter).

Next, we ask whether the query and proof complexity in Theorems 1.1 and 1.2 can be significantly reduced by allowing more extensive *interaction* between the verifier and the prover (i.e., arbitrary interactive communication rather than just a fixed non-interactive proof). Very relevant to this question is a recent result of [6] by which, loosely speaking, every language in \mathcal{NC} (which contains all context-free languages [15] and languages accepted by small ROBPs⁶) has an \mathcal{TPP} with $O(\sqrt{n})$ query and communication complexities. While the [6] result is more general, for context-free languages and ROBPs it achieves roughly the same query and communication complexities as the \mathcal{MAPs} in Theorems 1.1 and 1.2, but uses much more interaction (i.e., at least logarithmically many rounds of interaction compared to just a single message in our \mathcal{MAPs}).

¹ A related notion is that of a *probabilistically checkable proof of proximity* (\mathcal{PCPP}) [4,5]. \mathcal{PCPPs} differ from \mathcal{MAPs} in that the verifier is only given *query* (i.e., oracle) access to the proof, whereas in \mathcal{MAPs} , the verifier has free (*explicit*) access to the proof. Hence, \mathcal{PCPPs} are a \mathcal{PCP} analogue of property testing.

 $^{^{2}}$ Indeed, MAPs can be thought of as a restricted case of IPPs, in which the interaction is limited to a single message sent from the prover to the verifier.

³ The result in [11] is stated only for *oblivious* ROBPs but in [12, Section 1.3] it is stated that Newman's result holds also for general *non-oblivious* ROBPs.

⁴ To see that these two classes do not contain each other, observe that the language $\{0^i 1^j 2^i 3^j : i, j \ge 1\}$, which is *not* a context-free language [13, Example 7.20], has a poly(*n*)-width ROBP (which simply counts the number of repeated occurrences of 0, 1, 2 and 3). On the other hand, Kriegal and Waack [14] showed that every ROBP for the Dyck₂ language, which is a context-free language, has size $2^{\Omega(n)}$.

⁵ As pointed out in [7], if we do not restrict the length of the proof, then *every* property Π can be verified trivially using only a constant amount of queries, by considering an MAP proof that contains a full description of the input.

⁶ See Appendix B for a discussion on why languages accepted by ROBPs can be computed in small depth.

Download English Version:

https://daneshyari.com/en/article/6873771

Download Persian Version:

https://daneshyari.com/article/6873771

Daneshyari.com