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We devise a framework for proving tight lower bounds under the counting exponential-
time hypothesis #ETH introduced by Dell et al. (2014) [18]. Our framework allows us to 
convert classical #P-hardness results for counting problems into tight lower bounds under 
#ETH, thus ruling out algorithms with running time 2o(n) on graphs with n vertices and 
O (n) edges. As exemplary applications of this framework, we obtain tight lower bounds 
under #ETH for the evaluation of the zero-one permanent, the matching polynomial, and 
the Tutte polynomial on all non-easy points except for one line. This remaining line was 
settled very recently by Brand et al. (2016) [24].

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Counting complexity is a classical subfield of complexity theory, launched by Valiant’s seminal paper [2] that introduced 
the class #P and proved #P-hardness of the zero-one permanent, a problem that may equivalently be considered as asking 
for the number of perfect matchings in a bipartite graph. This initial breakthrough spawned an ongoing research program 
that systematically studies the complexity of computational counting problems, and many results in this area can be orga-
nized as dichotomy results. Such results show that, among problems that can be expressed in certain rich frameworks, each 
problem is either polynomial-time solvable or #P-hard. Moreover, these results often give criteria for deciding which side of 
the dichotomy a given problem occupies. For instance, a full dichotomy was shown for the problems of counting solutions 
to constraint-satisfaction problems [3,4], and similar results are known for large subclasses of so-called Holant problems 
[5,6], and for the evaluation of graph polynomials such as the Tutte polynomial [7] and the cover polynomial [8,9].

Over the course of the counting complexity program, it became clear that most interesting counting problems are 
#P-hard, and that the class of polynomial-time solvable problems is rather limited, nevertheless containing some surprising 
examples, such as counting perfect matchings in planar graphs, counting spanning trees, and problems amenable to holo-
graphic algorithms [10]. To attack the large body of hard problems, several relaxations were studied, such as approximate 
counting [11–13], counting modulo fixed numbers [14,15], and counting on restricted graph classes, such as planar and/or 
3-regular graphs [16,17].

In this paper, we follow an avenue of relaxations recently introduced by Dell et al. [18] and consider the possibility of 
sub-exponential exact algorithms for counting problems. More precisely, we rule out such algorithms for various counting 
problems under popular complexity-theoretic assumptions. For instance, we can clearly count perfect matchings on m-edge 
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graphs in time 2O (m) by brute-force, but is there a chance of obtaining a running time of 2o(m)? An unconditional negative 
answer would imply the separation of FP and #P, so our results need to rely upon additional hardness assumptions: We 
build upon the exponential-time hypothesis #ETH, introduced in [18], which we may consider for now as the hypothesis that 
the satisfying assignments to 3-CNF formulas ϕ on n variables cannot be counted in time 2o(n) . This hypothesis is trivially 
implied by the better-known and widely-believed decision version ETH, introduced in [19,20], which assumes the same 
lower bound for deciding the satisfiability of ϕ .

Dell et al. [18] were able to prove almost-tight lower bounds under #ETH for a variety of counting problems: For 
instance, they could rule out algorithms with running time 2o(n/ log n) for the zero-one permanent on graphs with n vertices 
and O (n) edges. Similar lower bounds were shown for counting vertex covers, and for most points of the Tutte polynomial.

1.1. Hardness via polynomial interpolation

The lower bounds in [18] are obtained via polynomial interpolation, one of the most prominent techniques for non-
parsimonious reductions between counting problems [21,7,16,17,22,23,18]. To illustrate this technique, and for the purposes 
of further exposition, let us reduce counting perfect matchings to counting matchings (that are not necessarily perfect), using 
a standard argument similar to [16]. In the following, let G be a graph with n vertices. We wish to obtain the number of 
perfect matchings in G by querying an oracle for counting matchings in arbitrary graphs.

Step 1 – Set up interpolation: For k ∈ N, let mk denote the number of matchings with exactly k unmatched vertices in G . In 
particular, m0 is equal to the number of perfect matchings in G . For an indeterminate x, define a polynomial μ via

μ(x) =
n∑

k=0

mk · xk (1)

and observe that its degree is n. Hence, we could use Lagrange interpolation to recover all its coefficients if we 
were given the evaluations of μ at n + 1 distinct input points. In particular, this would give us the constant 
coefficient m0, which counts the number of perfect matchings in G .

Step 2 – Evaluate the polynomial with gadgets: We can evaluate μ(t) at points t ∈ N \ {0} by a reduction to counting match-
ings: For t ∈ N with t ≥ 1, define a graph Gt from G by adding, for each vertex v ∈ V (G), a gadget that consists 
of an independent set of t − 1 fresh vertices together with edges from all of these vertices to v . Then it can be 
checked that μ(t) is equal to the number of matchings in Gt : Each matching in G with exactly k unmatched 
vertices can be extended to tk matchings in Gt by including up to one gadget edge at each unmatched vertex.

In summary, by evaluating the polynomial μ(t) for all t ∈ {1, . . . , n + 1} via gadgets and an oracle for counting matchings 
in Gt , we can use Lagrange interpolation to obtain m0. This gives a polynomial-time Turing reduction from counting perfect 
matchings to counting matchings, transferring the #P-hardness of the former problem to the latter.

Furthermore, the above argument can also be used to derive a lower bound for counting matchings, which is however 
far from being tight: If the running time for counting perfect matchings on n-vertex graphs has a lower bound of 2�(n) , then 
only a 2�(

√
n) lower bound for counting matchings follows from the above argument, since the reduction incurs a quadratic 

blowup. This is because Gn+1 has a gadget of size O (n) at each vertex, and thus O (n2) vertices in total.
Following the same outline as above, but using more sophisticated gadgets with O (logc n) vertices, similar reductions 

for various problems were obtained in [23,22,18], implying 2�(n/ logc n) lower bounds for these problems, which are however 
still not tight. In particular, these reductions share the somewhat unsatisfying commonality that they “leak” hardness: Tight 
lower bounds for the source problems of computing specific hard coefficients in a polynomial became less tight over the 
course of the reduction.

1.2. The limits of interpolation

Let us say that a reduction is gadget-interpolation-based if it proceeds along the two steps sketched above: First encode 
a hard problem into the coefficients of a polynomial p, then find gadgets that can be “locally” placed at vertices or edges 
so as to evaluate p(ξ) at sufficiently many points ξ . Finally use Lagrange interpolation to recover p from these evaluations. 
As remarked before, this is a well-trodden route for #P-hardness proofs. However, when embarking on this route to prove 
lower bounds under #ETH, we run into the following obstacles:

1. Gadget-interpolation-based reductions typically yield polynomials p of degree n = |V (G)|, hence require n + 1 evalu-
ations of p at distinct points, and thus in turn require n + 1 distinct gadgets to be placed at vertices of G . But since 
there are only finitely many simple graphs on O (1) vertices, the size of such gadgets must necessarily grow as some 
unbounded function α(n). Thus, any gadget-interpolation-based reduction can only yield 2�(n/α(n)) time lower bounds 
for some unbounded function α ∈ ω(1), but such bounds are typically not tight.

2. Additionally, such reductions issue only polynomially many queries to the target problem. This is required for the setting 
of #P-hardness, but it is nonessential in exponential-time complexity: To obtain a lower bound of 2�(n) , we might as 
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