
Information and Computation 261 (2018) 265–280

Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

Block interpolation: A framework for tight exponential-time

counting complexity

Radu Curticapean 1

Institute for Computer Science and Control, Hungarian Academy of Sciences, MTA SZTAKI, Kende u. 13–17, Budapest, Hungary

a r t i c l e i n f o a b s t r a c t

Article history:
Received in revised form 8 April 2016
Available online 8 February 2018

Keywords:
Exponential-time hypothesis
Counting complexity
Permanent
Matching polynomial
Independent set polynomial
Tutte polynomial

We devise a framework for proving tight lower bounds under the counting exponential-
time hypothesis #ETH introduced by Dell et al. (2014) [18]. Our framework allows us to
convert classical #P-hardness results for counting problems into tight lower bounds under
#ETH, thus ruling out algorithms with running time 2o(n) on graphs with n vertices and
O (n) edges. As exemplary applications of this framework, we obtain tight lower bounds
under #ETH for the evaluation of the zero-one permanent, the matching polynomial, and
the Tutte polynomial on all non-easy points except for one line. This remaining line was
settled very recently by Brand et al. (2016) [24].

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Counting complexity is a classical subfield of complexity theory, launched by Valiant’s seminal paper [2] that introduced
the class #P and proved #P-hardness of the zero-one permanent, a problem that may equivalently be considered as asking
for the number of perfect matchings in a bipartite graph. This initial breakthrough spawned an ongoing research program
that systematically studies the complexity of computational counting problems, and many results in this area can be orga-
nized as dichotomy results. Such results show that, among problems that can be expressed in certain rich frameworks, each
problem is either polynomial-time solvable or #P-hard. Moreover, these results often give criteria for deciding which side of
the dichotomy a given problem occupies. For instance, a full dichotomy was shown for the problems of counting solutions
to constraint-satisfaction problems [3,4], and similar results are known for large subclasses of so-called Holant problems
[5,6], and for the evaluation of graph polynomials such as the Tutte polynomial [7] and the cover polynomial [8,9].

Over the course of the counting complexity program, it became clear that most interesting counting problems are
#P-hard, and that the class of polynomial-time solvable problems is rather limited, nevertheless containing some surprising
examples, such as counting perfect matchings in planar graphs, counting spanning trees, and problems amenable to holo-
graphic algorithms [10]. To attack the large body of hard problems, several relaxations were studied, such as approximate
counting [11–13], counting modulo fixed numbers [14,15], and counting on restricted graph classes, such as planar and/or
3-regular graphs [16,17].

In this paper, we follow an avenue of relaxations recently introduced by Dell et al. [18] and consider the possibility of
sub-exponential exact algorithms for counting problems. More precisely, we rule out such algorithms for various counting
problems under popular complexity-theoretic assumptions. For instance, we can clearly count perfect matchings on m-edge

E-mail address: radu.curticapean@gmail.com.
1 Supported by ERC Starting Grant PARAMTIGHT (No. 280152) and ERC Consolidator Grant SYSTEMATICGRAPH (No. 725978). Part of this work was done

at Saarland University and appeared in the author’s PhD thesis [1]. Another part was done while visiting the Simons Institute for the Theory of Computing.

https://doi.org/10.1016/j.ic.2018.02.008
0890-5401/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.ic.2018.02.008
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
mailto:radu.curticapean@gmail.com
https://doi.org/10.1016/j.ic.2018.02.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2018.02.008&domain=pdf

266 R. Curticapean / Information and Computation 261 (2018) 265–280

graphs in time 2O (m) by brute-force, but is there a chance of obtaining a running time of 2o(m)? An unconditional negative
answer would imply the separation of FP and #P, so our results need to rely upon additional hardness assumptions: We
build upon the exponential-time hypothesis #ETH, introduced in [18], which we may consider for now as the hypothesis that
the satisfying assignments to 3-CNF formulas ϕ on n variables cannot be counted in time 2o(n) . This hypothesis is trivially
implied by the better-known and widely-believed decision version ETH, introduced in [19,20], which assumes the same
lower bound for deciding the satisfiability of ϕ .

Dell et al. [18] were able to prove almost-tight lower bounds under #ETH for a variety of counting problems: For
instance, they could rule out algorithms with running time 2o(n/ log n) for the zero-one permanent on graphs with n vertices
and O (n) edges. Similar lower bounds were shown for counting vertex covers, and for most points of the Tutte polynomial.

1.1. Hardness via polynomial interpolation

The lower bounds in [18] are obtained via polynomial interpolation, one of the most prominent techniques for non-
parsimonious reductions between counting problems [21,7,16,17,22,23,18]. To illustrate this technique, and for the purposes
of further exposition, let us reduce counting perfect matchings to counting matchings (that are not necessarily perfect), using
a standard argument similar to [16]. In the following, let G be a graph with n vertices. We wish to obtain the number of
perfect matchings in G by querying an oracle for counting matchings in arbitrary graphs.

Step 1 – Set up interpolation: For k ∈ N, let mk denote the number of matchings with exactly k unmatched vertices in G . In
particular, m0 is equal to the number of perfect matchings in G . For an indeterminate x, define a polynomial μ via

μ(x) =
n∑

k=0

mk · xk (1)

and observe that its degree is n. Hence, we could use Lagrange interpolation to recover all its coefficients if we
were given the evaluations of μ at n + 1 distinct input points. In particular, this would give us the constant
coefficient m0, which counts the number of perfect matchings in G .

Step 2 – Evaluate the polynomial with gadgets: We can evaluate μ(t) at points t ∈ N \ {0} by a reduction to counting match-
ings: For t ∈ N with t ≥ 1, define a graph Gt from G by adding, for each vertex v ∈ V (G), a gadget that consists
of an independent set of t − 1 fresh vertices together with edges from all of these vertices to v . Then it can be
checked that μ(t) is equal to the number of matchings in Gt : Each matching in G with exactly k unmatched
vertices can be extended to tk matchings in Gt by including up to one gadget edge at each unmatched vertex.

In summary, by evaluating the polynomial μ(t) for all t ∈ {1, . . . , n + 1} via gadgets and an oracle for counting matchings
in Gt , we can use Lagrange interpolation to obtain m0. This gives a polynomial-time Turing reduction from counting perfect
matchings to counting matchings, transferring the #P-hardness of the former problem to the latter.

Furthermore, the above argument can also be used to derive a lower bound for counting matchings, which is however
far from being tight: If the running time for counting perfect matchings on n-vertex graphs has a lower bound of 2�(n) , then
only a 2�(

√
n) lower bound for counting matchings follows from the above argument, since the reduction incurs a quadratic

blowup. This is because Gn+1 has a gadget of size O (n) at each vertex, and thus O (n2) vertices in total.
Following the same outline as above, but using more sophisticated gadgets with O (logc n) vertices, similar reductions

for various problems were obtained in [23,22,18], implying 2�(n/ logc n) lower bounds for these problems, which are however
still not tight. In particular, these reductions share the somewhat unsatisfying commonality that they “leak” hardness: Tight
lower bounds for the source problems of computing specific hard coefficients in a polynomial became less tight over the
course of the reduction.

1.2. The limits of interpolation

Let us say that a reduction is gadget-interpolation-based if it proceeds along the two steps sketched above: First encode
a hard problem into the coefficients of a polynomial p, then find gadgets that can be “locally” placed at vertices or edges
so as to evaluate p(ξ) at sufficiently many points ξ . Finally use Lagrange interpolation to recover p from these evaluations.
As remarked before, this is a well-trodden route for #P-hardness proofs. However, when embarking on this route to prove
lower bounds under #ETH, we run into the following obstacles:

1. Gadget-interpolation-based reductions typically yield polynomials p of degree n = |V (G)|, hence require n + 1 evalu-
ations of p at distinct points, and thus in turn require n + 1 distinct gadgets to be placed at vertices of G . But since
there are only finitely many simple graphs on O (1) vertices, the size of such gadgets must necessarily grow as some
unbounded function α(n). Thus, any gadget-interpolation-based reduction can only yield 2�(n/α(n)) time lower bounds
for some unbounded function α ∈ ω(1), but such bounds are typically not tight.

2. Additionally, such reductions issue only polynomially many queries to the target problem. This is required for the setting
of #P-hardness, but it is nonessential in exponential-time complexity: To obtain a lower bound of 2�(n) , we might as

Download English Version:

https://daneshyari.com/en/article/6873778

Download Persian Version:

https://daneshyari.com/article/6873778

Daneshyari.com

https://daneshyari.com/en/article/6873778
https://daneshyari.com/article/6873778
https://daneshyari.com

