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We reduce non-deterministic time T ≥ 2n to a 3SAT instance φ of quasilinear size |φ| =
T · logO (1) T such that there is an explicit NC0 circuit C that encodes φ in the following 
way: on input a (log |φ|)-bit index i, C outputs the ith clause of φ. The previous best result 
was C in NC1. Even in the simpler setting of polynomial size (|φ| = poly(T )), the previous 
best result was C in AC0.
More generally, for any time T ≥ n and parameter r ≤ n we obtain |φ| = max(T , 2n/r) ·
(n log T )O (1), and each output bit of C is a decision tree of depth O (log r).
As an application, we tighten Williams’ connection between satisfiability algorithms and 
circuit lower bounds (STOC 2010; SIAM J. Comput. 2013).

© 2018 Elsevier Inc. All rights reserved.

1. Introduction and our results

The efficient reduction of arbitrary non-deterministic computation to 3SAT is a fundamental result with widespread 
applications. For many of these, two aspects of the efficiency of the reduction are at a premium. The first is the length of 
the 3SAT instance. A sequence of works shows how to reduce non-deterministic time-T computation to a 3SAT instance φ
of quasilinear size |φ| = Õ (T ) := T logO (1) T [1–6]. More recent works obtain reductions with the same parameters which, 
in addition, introduce a “gap” (and which give rise to probabilistically checkable proofs) [7–10].

The second aspect is the computational complexity of producing the 3SAT instance φ given a machine M , an input 
x ∈ {0, 1}n , and a time bound T = T (n) ≥ n. It is well-known and easy to verify that a φ of size poly(T ) is computable even 
by circuits from the restricted class NC0. More generally, Agrawal, Allender, Impagliazzo, Pitassi, and Rudich show [11] that 
such NC0 reductions exist whenever AC0 reductions do.

A stronger requirement on the complexity of producing φ is critical for many applications. The requirement may be 
called clause-explicitness. It demands that the ith clause of φ be computable, given i ≤ |φ| and x ∈ {0, 1}n , with resources 
poly(|i|) = poly log |φ| = poly log T . In the case |φ| = poly(T ), this is known to be possible by an unrestricted circuit D of 
size poly(|i|). (The circuit has either random access to x, or, if T ≥ 2n , it may have x hardwired.) As a corollary, so-called 
succinct versions of NP-complete problems are complete for NEXP. Arora, Steurer, and Wigderson [12] note that the circuit 
D may be taken from the restricted class AC0. They use this to argue that, unless EXP = NEXP, standard NP-complete graph 
problems cannot be solved in time poly(2n) on graphs of size 2n that are described by AC0 circuits of size poly(n).
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Interestingly, applications to unconditional complexity lower bounds rely on reductions that are clause-explicit and si-
multaneously optimize the length of the 3SAT instance φ and the complexity of the circuit D computing clauses. For 
example, the time–space tradeoffs for SAT need to reduce non-deterministic time T to a 3SAT instance φ of quasilinear size 
Õ (T ) such that the ith clause is computable in time poly(|i|) = poly log |φ| and space O (log |φ|), see e.g. [13] or Van Melke-
beek’s survey [14]. More recently, the importance of optimizing both aspects of the reduction is brought to the forefront 
by Williams’ approach to obtain lower bounds by satisfiability algorithms that improve over brute-force search by a super-
polynomial factor [15–19]. To obtain lower bounds against a circuit class C using this technique, one needs a reduction of 
non-deterministic time T = 2n to a 3SAT instance of size Õ (T ) whose clauses are computable by a circuit D of size poly(n)

that belongs to the class C . For example, for the ACC0 lower bounds [16,19] one needs to compute them in ACC0. However 
it has seemed “hard (perhaps impossible)” [16] to compute the clauses with such restricted resources.

Two workarounds have been devised [16,18]. Both exploit the fact that, under an assumption such as P ⊆ ACC0, 
non-constructively there does exist such an efficient circuit computing clauses; the only problem is constructing it. They 
accomplish the latter using either nondeterminism [16] or brute-force [18] (cf. [20]). The overhead in these arguments lim-
its the consequences of satisfiability algorithms: before this work, for a number of well-studied circuit classes C (discussed 
later) a lower bound against C did not follow from a satisfiability algorithm for circuits in C .

1.1. Our results

We show that, in fact, it is possible to reduce non-deterministic computation of time T ≥ 2n to a 3SAT formula φ of 
quasilinear size |φ| = Õ (T ) such that given an index of � = log |φ| bits to a clause, one can compute (each bit of) the clause 
by looking at a constant number of bits of the index. Functions for which each output bit is computed from a constant 
number of input bits are also known as local, NC0, or junta. More generally our results give a trade-off between |φ| and the 
decision-tree depth needed to compute C ’s output bits. The results apply to any time bound T , paying an inevitable loss of 
O (|x|) = O (n) for T close to n.

Theorem 1 (Local reductions). Let M be an algorithm running in time T = T (n) ≥ n on inputs of the form (x, y) where |x| = n. Let 
r ≤ n be any value. Then, for every x ∈ {0, 1}n, there is a 3CNF φ of size |φ| = max(T , 2n/r) · (n log T )O (1) such that the following holds.

1. φ is satisfiable iff there is y ∈ {0, 1}T such that M(x, y) = 1.
2. There is a circuit D with input length log |φ| such that D(i) outputs the ith clause of φ and each output bit of D is a decision tree 

of depth O (log r). Further, D can be constructed from x in time poly(n, log T ).

Note that for T = 2�(n) , by setting r := n/ log T we get that D is in NC0 and φ has size T · logO (1) T . We also point out 
that the only place where decision-tree depth O (log r) (as opposed to O (1)) is needed in D is to select bits of the string x.

The previous best result was D in NC1 [7]. Even in the simpler setting of |φ| = poly(T ) the previous best result was D
in AC0 [12].

Tighter connections between satisfiability and lower bounds. The quest for non-trivial satisfiability algorithms has seen significant 
progress recently, see e.g. [16,21–25]. Our results lower the bar for obtaining new circuit lower bounds from such algorithms. 
Previously, a lower bound for circuits of depth d and size s was implied by a satisfiability algorithm for depth c · d and size 
sc for a constant c > 1 (for typical settings of s and d). With our proof it suffices to have a satisfiability algorithm for depth 
d + c and size c · s for a constant c. These results can be extended and optimized for several well-studied circuit classes. In 
particular we obtain the following new connections.

Corollary 2. For each of the following classes C , if the satisfiability of circuits in C can be solved in time 2n/nω(1) then there is a problem 
f ∈ ENP that is not solvable by circuits in C:

(1) linear-size circuits,
(2) linear-size series-parallel circuits,
(3) linear-size log-depth circuits,
(4) quasi-polynomial-size SYM-AND circuits.

Recall that available size lower bounds for unrestricted circuits are between 3n − o(n) and 5n − o(n), depending on the 
basis [26–28]. Although Corollary 2 and Corollary 3 below are stated in terms of linear-size circuits, the proofs provide a 
close correspondence between the running time for satisfiability and the parameters of the circuit class. In particular, the 
constant hidden by the circuit size in class (1) can be optimized, as discussed in the paragraph “Subsequent work” below. At 
the moment this approach does not match known lower bounds, due to the (in)efficiency of known satisfiability algorithms.

In 1977 Valiant [29] focused attention on classes (2) and (3). (Some missing details about series-parallel graphs are 
provided in [30].) The class (4) contains ACC [31,32], and can be simulated by number-on-forehead protocols with a poly-
logarithmic number of players and communication [33]. Williams [16] gives a quasilinear-time algorithm to evaluate a 
SYM-AND circuit on all inputs.
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