
Information and Computation 261 (2018) 78–115

Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

A type-based complexity analysis of Object Oriented 

programs ✩

Emmanuel Hainry ∗, Romain Péchoux

Université de Lorraine, CNRS, Inria, LORIA, Nancy, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 July 2015

Keywords:
Object Oriented Program
Type system
Complexity
Polynomial time

A type system is introduced for a generic Object Oriented programming language in order 
to infer resource upper bounds. A sound and complete characterization of the set of 
polynomial time computable functions is obtained. As a consequence, the heap-space and 
the stack-space requirements of typed programs are also bounded polynomially. This type 
system is inspired by previous works on Implicit Computational Complexity, using tiering 
and non-interference techniques. The presented methodology has several advantages. First, 
it provides explicit big O polynomial upper bounds to the programmer, hence its use 
could allow the programmer to avoid memory errors. Second, type checking is decidable 
in polynomial time. Last, it has a good expressivity since it analyzes most object oriented 
features like inheritance, overload, override and recursion. Moreover it can deal with loops 
guarded by objects and can also be extended to statements that alter the control flow like 
break or return.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Motivations

In the last decade, the development of embedded systems and mobile computing has led to a renewal of interest in 
predicting program resource consumption. This kind of problematic is highly challenging for popular object oriented pro-
gramming languages which come equipped with environments for applications running on mobile and other embedded 
devices (e.g. Dalvik, Java Platform Micro Edition (Java ME), Java Card and Oracle Java ME Embedded).

The current paper tackles this issue by introducing a type system for a compile-time analysis of both heap and stack 
space requirements of OO programs thus avoiding memory errors. This type system is also sound and complete for the set 
of polynomial time computable functions on the Object Oriented paradigm.

This type system combines ideas coming from tiering discipline, used for complexity analysis of function algebra [1,2], 
together with ideas coming from non-interference, used for secure information flow analysis [3]. The current work is an 
extended version of [4] and is strongly inspired by the seminal paper [5].

✩ This work has been partially supported by ANR Project ELICA ANR-14-CE25-0005.

* Corresponding author.
E-mail addresses: hainry@loria.fr (E. Hainry), pechoux@loria.fr (R. Péchoux).

https://doi.org/10.1016/j.ic.2018.05.006
0890-5401/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.ic.2018.05.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
mailto:hainry@loria.fr
mailto:pechoux@loria.fr
https://doi.org/10.1016/j.ic.2018.05.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2018.05.006&domain=pdf


E. Hainry, R. Péchoux / Information and Computation 261 (2018) 78–115 79

1.2. Abstract OO language

The results of this paper will be presented in a formally oriented manner in order to highlight their theoretical sound-
ness. For this, we will consider a generic Abstract Object Oriented language called AOO. It can be seen as a language strictly 
more expressive than Featherweight Java [6] enriched with features like variable updates and while loops. The language is 
generic enough. Consequently, the obtained results can be applied both to impure OO languages (e.g. Java) and to pure ones 
(e.g. SmallTalk or Ruby). Indeed, in this latter case, it just suffices to forget rules about primitive data types in the type sys-
tem. Moreover, it does not depend on the implementation of the language being compiled (ObjectiveC, OCaml, Scala, ...) or 
interpreted (Python standard implementation, OCaml, ...). There are some restrictions: it does not handle exceptions, inner 
classes, generics, multiple inheritance or pointers. Hence languages such as C++ cannot be handled. However we claim that 
the analysis can be extended to exceptions, inner classes and generics. This is not done in the paper in order to simplify the 
technical analysis. The presented work captures Safe Recursion on Notation by Bellantoni and Cook [1] and we conjecture 
that it could be adapted to programs with higher-order functions. The intuition behind such a conjecture is just that tiers 
are very closely related to the ! and § modalities of light logics [7].

1.3. Intuition

The heap is represented by a directed graph where nodes are object addresses and arrows relate an object address to 
its field addresses. The type system splits variables in two universes: tier 0 universe and tier 1 universe. In this setting, 
the high security level is tier 0 while low security level is tier 1. While tier 1 variables are pointers to nodes of the initial 
heap, tier 0 variables may point to newly created addresses. The information may flow from tier 1 to tier 0, that is a tier 
0 variable may depend on tier 1 variables. However the presented type system precludes flows from 0 to 1. Indeed once a 
variable has stored a newly created instance, it can only be of tier 0. Tier 1 variables are the ones that can be used either 
as guards of a while loop or as a recursive argument in a method call whereas tier 0 variables are just used as storages for 
the computed data. This is the reason why, in analogy with information-flow analysis, tier 0 is the high security level of 
the current setting, though this naming is opposed to the icc standard interpretation where tier 1 is usually seen as “safer” 
than 0 because its use is controlled and restricted.

The polynomial upper bound is obtained as follows: if the input graph structure has size n then the number of distinct 
possible configurations for k tier 1 variables is at most O (nk). For this, we put some restrictions on operations that can 
make the memory grow: constructors for the heap and operators and method calls for the stack.

1.4. Example

Consider the following Java code duplicating the length of a boolean BList as an illustrating example:

y := x.clone();
while (x != null){

y := new BList(true,y);
x := x.getQueue();

}

The tier of variable x will be enforced to be 1 since it is used in a while loop guard and in the call of the recursive method 
clone. On the opposite, the tier of variable y will be enforced to be 0 since the y:=new BList(true,y); instruction 
enlarges the memory use. For each assignment, we will check that the tier of the variable assigned to is equal to (smaller 
than for primitive data) the tier of the assigned expression. Consequently, the assignment y:=x.clone(); is typable in 
this code (since the call x.clone(); is of tier 0 as it makes the memory grow) whereas it cannot be typed if the first 
instruction is to be replaced by either x:=y.clone(); or x:=y.

1.5. Methodology

The OO program complexity analysis presented in this paper can be summed up by the following figure:



Download	English	Version:

https://daneshyari.com/en/article/6873827

Download	Persian	Version:

https://daneshyari.com/article/6873827

Daneshyari.com

https://daneshyari.com/en/article/6873827
https://daneshyari.com/article/6873827
https://daneshyari.com/

