
JID:YINCO AID:4380 /FLA [m3G; v1.236; Prn:17/05/2018; 14:00] P.1 (1-28)

Information and Computation ••• (••••) •••–•••

Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

From Jinja bytecode to term rewriting: A complexity reflecting

transformation

Georg Moser, Michael Schaper ∗

Institute of Computer Science, University of Innsbruck, Austria

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 July 2015
Available online xxxx

Keywords:
Program transformation
Term rewriting
Termination and resource analysis
Automation

In this paper we show how the runtime complexity of imperative programs can be analysed
fully automatically by a transformation to term rewrite systems, the complexity of which can
then be automatically verified by existing complexity tools. We restrict to well-formed Jinja
bytecode programs that only make use of non-recursive methods. The analysis can handle
programs with cyclic data only if the termination behaviour is independent thereof.
We exploit a term-based abstraction of programs within the abstract interpretation
framework. The proposed transformation encompasses two stages. For the first stage
we perform a combined control and data flow analysis by evaluating program states
symbolically, which is shown to yield a finite representation of all execution paths of the
given program through a graph, dubbed computation graph. In the second stage we encode
the (finite) computation graph as a term rewrite system. This is done while carefully
analysing complexity preservation and reflection of the employed transformations such
that the complexity of the obtained term rewrite system reflects on the complexity of the
initial program. Finally, we show how the approach can be automated and provide ample
experimental evidence of the advantages of the proposed analysis.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In recent years research on complexity analysis of first-order term rewrite systems has matured and a number of note-
worthy results could be established. First we give a quantitative assessment based on the annual competition of complexity
analysers within TERMCOMP.1 With respect to last year’s run of TERMCOMP, we see a success rate of 42% (60%) in the
category Runtime Complexity – Innermost Rewriting. This benchmark roughly represents runtime complexity analysis of func-
tional programs evaluated in an eager fashion and success here means that a polynomial upper (lower) bound could be
established fully automatically. It is known that a considerable amount of examples of the benchmark does not exhibit
polynomial runtime complexity or even termination. With respect to a qualitative assessment we want to mention (i) ef-
forts to suit existing termination techniques to complexity analysis [1–4], (ii) adaptions of the dependency pair method
to complexity [5–7], (iii) the ongoing quest to incorporate compositionality [8,9], and (iv) very recent work on worst case
lower bounds [10]. ([11] provides a survey on methods of complexity analysis of term rewrite systems.)

A natural idea is to exploit existing complexity analysers in the context of (fully automated) resource analysis of pro-
grams. Successful examples being for example the development of complexity analysis tools for logic or (higher-order)

* Corresponding author at: Innstrasse 42, 6020 Innsbruck, Austria.
E-mail addresses: georg.moser@uibk.ac.at (G. Moser), michael.schaper@uibk.ac.at (M. Schaper).

1 http://www.termination -portal .org /wiki /Termination _Competition.

https://doi.org/10.1016/j.ic.2018.05.007
0890-5401/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.ic.2018.05.007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
mailto:georg.moser@uibk.ac.at
mailto:michael.schaper@uibk.ac.at
http://www.termination-portal.org/wiki/Termination_Competition
https://doi.org/10.1016/j.ic.2018.05.007

JID:YINCO AID:4380 /FLA [m3G; v1.236; Prn:17/05/2018; 14:00] P.2 (1-28)

2 G. Moser, M. Schaper / Information and Computation ••• (••••) •••–•••

functional programs [12,13]. In this paper we show how the runtime complexity of imperative programs can be analysed
fully automatically by a transformation to term rewrite systems, the complexity of which can then be automatically veri-
fied by existing complexity tools. More precisely, we study complexity preservation and reflection of transformations from
Jinja bytecode (JBC) programs to constraint term rewrite systems. Jinja is a Java-like language that exhibits the core features of
Java [14]. Its semantics is clearly defined and machine checked in the theorem prover Isabelle/HOL [15]. JBC programs run
on the Jinja virtual machine (JVM). In our analysis we focus on non-recursive programs. The analysis can handle programs
with cyclic data only if the termination behaviour is independent thereof. We summarise the main contributions of this
paper.

– We exploit a term-based abstraction of JBC programs within the abstract interpretation framework [16] (Lemma 11). The
proposed transformation encompasses two stages.

– In the first stage we employ our idea of term-based abstraction to obtain a novel representation of abstractions of JVM
states (Definition 11). We perform a combined control flow and data flow analysis by symbolically evaluating JVM states,
thus obtaining a finite representation of all execution paths of a JBC program P through a graph, the computation graph
(Theorem 2).

– In the second stage we encode the (finite) computation graph as constraint term rewrite system. These rewrite systems
allow the formulation of conditions C over a theory T , such that a rule can only be used if the condition C is satisfied
in T .

– We prove that the transformation of P to the constraint rewrite system R is complexity reflecting, that is, the runtime
complexity function with respect to P is bounded by the runtime complexity function with respect to R (Corollary 3).
Moreover, we obtain that the proposed transformation is also non-termination preserving (Corollary 4). We emphasise
that our notion of complexity reflecting abstraction is carefully crafted such that we obtain a constant-factor size over-
head in the simulation of the bytecode relation as a rewrite relation.

– Finally, we establish automatability of the transformation by providing a prototype implementation. Our prototype is
already capable of yielding automated resource analysis of challenging examples from the literature.

We emphasise that our approach is total (Corollary 1). That is, the transformation can be applied to any well-formed, non-
recursive JBC program and the computation graph is guaranteed to be finite. The constraints in the obtained rewrite systems
are employed to express relations on program variables. In our actual use, we fix the underlying theory to Presburger arith-
metic. However, the approach extends to any decidable theory that allows reasoning over the program states. With respect
to automation, we show how to combine our proposed term-based abstraction with external shape analyses, as presented
for example in [17–19].

Quite principally the established transformation allows for the direct use of rewriting based runtime complexity analysis
for the resource analysis of JBC programs. However, currently existing tools for complexity analysis do not (yet) extend
to constraint term rewrite systems. In order to test the effectivity of the approach, our prototype implements techniques
for assessing the runtime complexity of constraint term rewrite systems. Furthermore we present (complexity reflecting)
transformations from constraint rewrite systems to (standard) term rewrite systems and integer transitions systems. The
systems obtained by these transformations thus can make use of well-known techniques from the literature and existing
tools. The prototype is integrated into the general framework of TCT [20,21].2

Structure This paper is structured as follows. In Sections 2 and 3 we fix some basic notions to be used in the sequel as
well as the definition of complexity reflecting abstractions. Furthermore, we give an overview over the Jinja programming
language. Our notion of abstract states is presented in Section 4. We prove correctness of the abstraction in Section 5, while
computation graphs are proposed in Section 6. Section 7 introduces constraint term rewrite systems, fixes the studied theory
to Presburger arithmetic, and presents the transformation from computation graphs to rewrite systems. In Section 8 we
show how to automate the transformation and give insights about the prototype implementation. Related work is presented
in Section 9. Finally, in Section 10 we conclude.

2. Preliminaries

We assume basic familiarity with term rewriting and the Java programming language. In what follows we fix some basic
notations as well as the definition of complexity reflecting abstractions.

Let f be a mapping from A to B , denoted f : A → B , then dom(f) = {x | f (x) ∈ B} and rg(f) = { f (x) | x ∈ A}. Let
a ∈ dom(f). We define:

f {a �→ v}(x) :=
{

v if x = a

f (x) otherwise .

2 http://cl -informatik.uibk.ac .at /software /tct.

http://cl-informatik.uibk.ac.at/software/tct

Download	English	Version:

https://daneshyari.com/en/article/6873830

Download	Persian	Version:

https://daneshyari.com/article/6873830

Daneshyari.com

https://daneshyari.com/en/article/6873830
https://daneshyari.com/article/6873830
https://daneshyari.com/

