
Information and Computation 260 (2018) 1–8

Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

Accepting runs in a two-way finite automaton

Oscar H. Ibarra a,∗, Zhe Dang b,c, Qin Li b

a Department of Computer Science, University of California, Santa Barbara, CA 93106, USA
b School of Computer, Anhui University of Technology, Ma’anshan, Anhui, China
c School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA 99164, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 July 2017
Received in revised form 5 February 2018
Available online 21 March 2018

Keywords:
Two-way automata
Accepting run
Sampling

An accepting run in a two-way finite automaton M is a sequence of states that M enters
during some accepting computation. The set of all such runs is denoted by Lrun,M . We
study the complexity of Lrun,M when M is a 2NFA (2DFA). We also look at the complexity
of “position sampling” (the sequence of states that M enters in specified positions of some
accepted input) in a 2NFA. In particular, we give some language properties of sampled runs
of 2NFAs augmented with restricted unbounded storage.

© 2018 Published by Elsevier Inc.

1. Introduction

One way to understand the behavior of a software system is through observation. That is, when the system runs, we
record a sequence of values of all or part of its state variables like the PC (program counter), variable values, pointer
locations, stack frames, I/O, etc. Such a sequence, called a trace, can later be used for either off-line or online analysis.
A trace contains valuable information such as information flow among the state variables. An automaton (e.g., a two-way
finite automaton) can model/specify the execution of a program, where the PC values during the run of the program would
correspond to the states of the automaton [2,3,11].

If M is a 2NFA (2DFA), let Lrun,M = {α | αis a sequence of states that M enters during some accepting computation on
some input}. In this paper, we study the complexity of Lrun,M when M is a 2NFA (2DFA). We also look at the complexity
of “position sampling” (the sequence of states that M enters in specified positions of some accepted input) in a 2NFA.
In particular, we give some language properties of sampled runs of 2NFAs augmented with restricted unbounded storage.

We will use the following notations for language acceptors:

• DFA (NFA) = one-way deterministic (nondeterministic) finite automaton. DFAs and NFAs are equivalent, and they accept
the same class of languages.

• 2DFA(2NFA) = two-way deterministic (nondeterministic) finite automaton with left and right input end-markers.
• finite-crossing 2DFA (2NFA) = 2DFA (2NFA) which crosses the boundary between any two adjacent cells of the input

tape at most k times for some fixed k ≥ 1.
• DPDA (NPDA) = one-way deterministic (nondeterministic) pushdown automaton, i.e., a DFA (NFA) augmented with

a pushdown stack. NPDAs accept exactly the context-free languages (CFLs).

* Corresponding author.
E-mail addresses: ibarra @cs .ucsb .edu (O.H. Ibarra), zdang @eecs .wsu .edu (Z. Dang), linuxos2 @163 .com (Q. Li).

https://doi.org/10.1016/j.ic.2018.03.002
0890-5401/© 2018 Published by Elsevier Inc.

https://doi.org/10.1016/j.ic.2018.03.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
mailto:ibarra@cs.ucsb.edu
mailto:zdang@eecs.wsu.edu
mailto:linuxos2@163.com
https://doi.org/10.1016/j.ic.2018.03.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2018.03.002&domain=pdf

2 O.H. Ibarra et al. / Information and Computation 260 (2018) 1–8

A counter is an integer variable that can be incremented by 1, decremented by 1, left unchanged, and tested for zero.
It starts at zero and cannot store negative values. Thus, a counter is a pushdown stack on a unary alphabet, in addition to
the bottom of the stack symbol which is never altered.

An automaton (DFA, NFA, 2DFA, 2NFA, DPDA, NPDA, etc.) can be augmented with a finite number of counters, where the
“move” of the machine also now depends on the status (zero or non-zero) of the counters, and the move can update the
counters. It is well known that a DFA augmented with two counters is equivalent to a deterministic Turing machine [12].

In this paper, we will restrict the augmented counter(s) to be reversal-bounded in the sense that each counter can
only reverse (i.e., change mode from non-decreasing to non-increasing and vice-versa) at most r times for some given r.
In particular, when r = 1, the counter reverses only once, i.e., once it decrements, it can no longer increment. Note that
a counter that makes r reversals can be simulated by � r+1

2 � 1-reversal counters [8]. Closure and decidable properties of
various machines augmented with reversal-bounded counters have been studied in the literature (see, e.g., [8,9]). We will
use the notation DFCM, NFCM, 2DFCM, 2NFCM, DPCM, NPCM, etc., to denote a DFA, NFA, 2DFA, 2NFA, DPDA, NPDA, etc.,
augmented with reversal-bounded counters.

Automata with reversal-bounded counters can “count”, as seen in the following example.

Example 1.1. Lk = {x1# · · ·#xk# | xi ∈ (a + b)+, xi �= x j for i �= j} can be accepted by an NFCM Mk with k(k − 1)/2 1-reversal
counters.

For 1 ≤ i < j ≤ k, Mk nondeterministically guesses that xi and x j are of
(i) different lengths, or (ii) disagree in at least one position.
To accomplish (i), Mk reads xi and stores |xi | in counter Ci and then decrements the counter while reading x j . Then

|xi | �= |x j| if and only if Ci becomes zero before all of x j is read or is positive after all of x j is read. To accomplish (ii), Mk
stores in counter Ci a “guessed” position pi of xi and records in the state the symbol api in that location. Then later, when
it is scanning x j , Mk , decrements Ci . When Ci becomes zero, Mk checks that the symbol under the head (on x j) is not the
same as api . Clearly, Mk uses k(k − 1)/2 1-reversal counters.

Let M be a 2NFA with input alphabet �, which is equipped with a two-way input tape (with left end-marker � �∈ �

and right end-marker � �∈ �). Suppose that an input word, say w ∈ �∗ , is given on the input tape (so the tape content is
actually �w�). The read head in M reads the input while performing a state transition drawn from a finite set T , which is
called the transition table of M , or simply, the transitions of M . More precisely, a state transition is in the form of

(s,a, s′,d)

where s, s′ are states (there are only finitely many distinct states), a ∈ � ∪ {�, �} is an input symbol or an end-marker, and
d ∈ {+1, −1, 0} is a direction (i.e., +1, −1, and 0 are respectively for moving to the right, moving to the left, and staying).
When d = 0, the state transition is called a stationary move. For instance, the transition (s, a, s′, −1) means that, when M
is at state s while symbol a is under the read head, the head moves to the right and the state is changed to s′ . Sometimes,
we explicitly indicate the direction for readability; e.g., (s, a, s′, left). M is a 2DFA (i.e., deterministic) if for each pair (s, a)

there is at most one (s′, d) such that (s, a, s′, d) ∈ T . In this case, we write (s, a) → (s′, d) for the transition (s, a, s′, d). M
starts from its initial state and the read head is under the left end-marker. M then performs a sequence of state transitions,
for some n,

(s0,a0, s1,d0)(s1,a1, s2,d1) · · · (sn,an, sn+1,dn)

while moving the two-way head on the w , where s0 is the initial state, the first transition (s0, a0, s1, d0) reads the left
end-marker and moves to the right. We note that the symbols a0, a1, · · · , an are actually the symbols under the read head
when M executes the sequence of transitions on input �w�.

M accepts w when M enters an accepting state (i.e., sn+1 is an accepting state in the above transition sequence). The
state sequence s0s1 · · · sn+1 in the state transition sequence witnessing the acceptance is called an accepting run. Since M is
nondeterministic, there could be more than one accepting run for the given w . We use L(M) to denote the set of all words
w accepted by M and use Lrun,M = {α | α is an accepting run of M on w , w ∈ L(M)} to denote the set of all accepting runs
of M . Clearly, Lrun,M is not necessarily a regular language on alphabet S (the states in M). In fact, stronger results will be
shown in the next section.

2. Accepting runs in 2DFAs

Let k be a number. When a 2DFA (resp. 2NFA) makes at most k turns on all of its accepting runs, we call it a k-turn
2DFA (resp. k-turn 2NFA). In particular, when a k-turn 2DFA (resp. k-turn 2NFA) has no stationary moves, we call it a
non-stationary k-turn 2DFA (resp. non-stationary k-turn 2NFA).

A finite-crossing 2NFCM (2DFCM) is a finite-crossing 2NFA (2DFA) augmented with reversal-bounded counters. The fol-
lowing was shown in [6]:

Download English Version:

https://daneshyari.com/en/article/6873834

Download Persian Version:

https://daneshyari.com/article/6873834

Daneshyari.com

https://daneshyari.com/en/article/6873834
https://daneshyari.com/article/6873834
https://daneshyari.com

