
JID:YINCO AID:4313 /FLA [m3G; v1.221; Prn:13/09/2017; 8:41] P.1 (1-12)

Information and Computation ••• (••••) •••–•••

Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

Automata for regular expressions with shuffle ✩

Sabine Broda ∗, António Machiavelo, Nelma Moreira, Rogério Reis

CMUP & DCC, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 November 2015
Available online xxxx

Keywords:
Regular expressions
Shuffle operation
Partial derivatives
Finite automata
Position automata
Average case
Analytic combinatorics

We generalize the partial derivative automaton and the position automaton to regular
expressions with shuffle, and study their state complexity in the worst, as well as in the
average case. The number of states of the partial derivative automaton (Apd) is, in the
worst case, at most 2m , where m is the number of letters in the expression. The asymptotic
average is bounded by (4

3)m . We define a position automaton (Apos) that is homogeneous,
but in which several states can correspond to a same position, and we show that Apd is a
quotient of Apos . The number of states of the position automaton is at most 1 +m(2m − 1),
while the asymptotic average is no more than m(4

3)m .
© 2017 Published by Elsevier Inc.

1. Introduction

The class of regular languages is closed under shuffle (or interleaving operation), and extended regular expressions with
shuffle can be much more succinct than the equivalent ones with disjunction, concatenation, and star operators. For the
shuffle operation, Mayer and Stockmeyer [16] studied the computational complexity of membership and nonequivalence
problems. Nonequivalence is exponential-time-complete, and membership is NP-complete for some classes of regular lan-
guages. In particular, they showed that for regular expressions (REs) with shuffle, of size n, an equivalent nondeterministic
finite automaton (NFA) needs at most 2n states, and presented a family of REs with shuffle, of size O(n), for which the
corresponding NFAs have at least 2n states. Gelade [12], and Gruber and Holzer [14,13] showed that there exists a double
exponential trade-off in the translation from REs with shuffle to standard REs. Gelade also gave a tight double exponential
upper bound for the translation of REs with shuffle to DFAs. Recently, conversions of shuffle expressions to finite automata
were presented by Estrade et al. [9], and Kumar and Verma [15]. In the former an expression is transformed first into a
parallel finite automaton and then to an ε-NFA of size 22r−3c , where r is the size of the expression and c the number
of occurrences of the concatenation operator. In the latter the authors give an algorithm for the construction of an ε-free
NFA based on the classic Glushkov/position construction, which the authors claim to have at most 2m+1 states, where m is
the number of letters that occur in the RE with shuffle. Each state corresponds to a set of positions of letters in RE, and
in opposition to what happens in the position automaton for standard REs, the automaton is not homogeneous, i.e. the
incoming transitions of a state do not share necessarily the same label.

In this paper we present a conversion method of REs with shuffle to ε-free NFAs, by generalizing the partial deriva-
tive construction for standard REs [1,17]. For standard REs, the partial derivative automaton (Apd) is a quotient of the
Glushkov/position automaton (Apos), and Broda et al. [3,4] showed that, asymptotically, and on average, the size of Apd is

✩ This work was partially funded by the European Regional Development Fund through the programme COMPETE and by the Portuguese Government
through the FCT under project UID/MAT/00144/2013.

* Corresponding author.
E-mail addresses: sbb@dcc.fc.up.pt (S. Broda), ajmachia@fc.up.pt (A. Machiavelo), nam@dcc.fc.up.pt (N. Moreira), rvr@dcc.fc.up.pt (R. Reis).

http://dx.doi.org/10.1016/j.ic.2017.08.013
0890-5401/© 2017 Published by Elsevier Inc.

http://dx.doi.org/10.1016/j.ic.2017.08.013
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
mailto:sbb@dcc.fc.up.pt
mailto:ajmachia@fc.up.pt
mailto:nam@dcc.fc.up.pt
mailto:rvr@dcc.fc.up.pt
http://dx.doi.org/10.1016/j.ic.2017.08.013

JID:YINCO AID:4313 /FLA [m3G; v1.221; Prn:13/09/2017; 8:41] P.2 (1-12)

2 S. Broda et al. / Information and Computation ••• (••••) •••–•••

half the size of Apos . In the case of REs with shuffle we show that the number of states of the partial derivative automaton
is, in the worst case, 2m (with m as before) and an upper bound for the average size is, asymptotically, (4

3)m . We also
present a construction of a position automaton Apos from a RE with shuffle which is homogeneous, and for which the
partial derivative automaton is a quotient. The number of states of Apos is, in the worst case, 1 + m(2m − 1) (with m as
before), and an upper bound for the average size is, asymptotically, m(4

3)m .
This paper is organized as follows. In the next section we review the shuffle operation and regular expressions with

shuffle. In Section 3 we consider equation systems, for languages and expressions, associated with nondeterministic finite
automata, and define a solution for a system of equations for a shuffle expression. An alternative and equivalent construction,
denoted by Apd , is given in Section 4 using the notion of partial derivative. In Section 5, we give the construction of an
automaton based on the notion of positions, denoted by Apos , and show that Apd is a quotient of Apos . In Section 6, we
study the average state complexity of both Apd and Apos using the framework of analytic combinatorics. We conclude in
Section 7 with some considerations about the upper bounds obtained in this paper, and point out some possible directions
for some related future work.

2. Regular expressions with shuffle

Given an alphabet �, the shuffle of two words in �� is a finite set of words defined inductively as follows, for x, y ∈ ��

and a, b ∈ �

x �� ε = ε �� x = {x}
ax �� by = { az | z ∈ x �� by } ∪ { bz | z ∈ ax �� y }.

This definition is extended to sets of words, i.e., languages, in the natural way:

L1 �� L2 =
⋃

x∈L1,y∈L2

x �� y.

It is well known that if two languages L1, L2 ⊆ �� are regular then L1 �� L2 is regular. One can extend regular ex-
pressions to include the �� operator. Given an alphabet �, we let T�� denote the set containing ∅ plus all terms finitely
generated from � ∪ {ε} and operators +, ·, ��, � , that is, the expressions τ generated by the grammar

τ → ∅ | α (1)

α → ε | a | (α + α) | (α · α) | (α �� α) | α� (a ∈ �). (2)

As usual, the (regular) language L(τ) represented by an expression τ ∈ T�� is inductively defined as follows: L(∅) = ∅,
L(ε) = {ε}, L(a) = {a} for a ∈ �, L(α�) = L(α)� , L(α + β) = L(α) ∪ L(β), L(αβ) = L(α)L(β), and L(α �� β) = L(α) ��
L(β). We say that two expressions τ1, τ2 ∈ T�� are equivalent, and write τ1

.= τ2, if L(τ1) = L(τ2). The set of alphabet
symbols occurring in an expression τ is denoted by �τ .

Example 1. Consider αn = a1 �� · · · �� an , where n ≥ 1, ai
= a j for 1 ≤ i
= j ≤ n. Then,

L(αn) = { ai1 · · ·ain | i1, . . . , in is a permutation of 1, . . . ,n}.

We recall that standard regular expressions constitute a Kleene algebra and the shuffle operator �� is commutative,
associative, and distributes over +. One also has that for all a, b ∈ � and τ1, τ2 ∈ T�� ,

aτ1 �� bτ2
.= a(τ1 �� bτ2) + b(aτ1 �� τ2).

Given a language L, we define ε(τ) = ε(L(τ)), where, ε(L) = ε if ε ∈ L and ε(L) = ∅ otherwise. Using the identity
elements of · and +, and the absorbing property of ∅, a recursive definition of ε : T�� −→ {∅, ε} is given by the following:
ε(a) = ε(∅) = ∅, ε(ε) = ε(α�) = ε, ε(α + β) = ε(α) + ε(β), ε(αβ) = ε(α)ε(β), and ε(α �� β) = ε(α)ε(β). Moreover, in
what follows we will always consider expressions reduced according to the following equations α �� ε

.= ε �� α
.= α and

αε
.= εα

.= α. These are natural simplifications that do not affect the complexity upper bounds obtained.

3. Automata and systems of equations

We first recall the definition of an NFA as a tuple A = 〈S, �, S0, δ, F 〉, where S is a finite set of states, � is a finite
alphabet, S0 ⊆ S the set of initial states, δ : S × � −→ P(S) the transition function, and F ⊆ S the set of final states. The
extension of δ to sets of states and words is defined by δ(X, ε) = X and δ(X, ax) = δ(∪s∈Xδ(s,a), x). A word x ∈ �� is
accepted by A if and only if δ(S0, x) ∩ F
= ∅. The language of A is the set of words accepted by A and denoted by L(A).
The right language of a state s, denoted by Ls , is the language accepted by A if we take S0 = {s}. If two automata A1 and A2
are isomorphic we say that A1 � A2. An equivalence relation ≡ on S is right invariant w.r.t. A if and only if for all s, t ∈ S ,
s ≡ t implies that

Download English Version:

https://daneshyari.com/en/article/6873874

Download Persian Version:

https://daneshyari.com/article/6873874

Daneshyari.com

https://daneshyari.com/en/article/6873874
https://daneshyari.com/article/6873874
https://daneshyari.com

