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We solve an open problem concerning syntactic complexity: We prove that the cardinality 
of the syntactic semigroup of a suffix-free language with n left quotients (that is, with 
state complexity n) is at most (n − 1)n−2 + n − 2 for n � 6. Since this bound is known 
to be reachable, this settles the problem. We also reduce the alphabet of the witness 
languages reaching this bound to five letters instead of n + 2, and show that it cannot 
be any smaller. Finally, we prove that the transition semigroup of a minimal deterministic 
automaton accepting a witness language is unique for each n.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The syntactic complexity [8] of a regular language L is the size of its syntactic semigroup [14]. This semigroup is isomor-
phic to the transition semigroup of the quotient automaton D, a minimal deterministic finite automaton (DFA) accepting 
the language. The descriptional complexity of syntactic monoids as a function of minimal DFA size for regular languages 
was first considered systematically in [11,13].

The number n of states of D is the state complexity of the language [16], and it is the same as the quotient complexity [3]
(number of left quotients) of the language. The syntactic complexity of a class of regular languages is the maximal syntactic 
complexity of languages in that class expressed as a function of the quotient complexity n.

If w = uxv for some u, v, x ∈ �∗ , then u is a prefix of w , v is a suffix of w and x is a factor of w . Prefixes and suffixes of w
are also factors of w . A language L is prefix-free (respectively, suffix-free, factor-free) if w, u ∈ L and u is a prefix (respectively, 
suffix, factor) of w , then u = w . A language is bifix-free if it is both prefix- and suffix-free. These languages play an important 
role in coding theory, have applications in such areas as cryptography, data compression, and information transmission, and 
have been studied extensively; see [2] for example. In particular, suffix-free languages (with the exception of {ε}, where ε
is the empty word) are suffix codes. Moreover, suffix-free languages are special cases of suffix-convex languages, where a 
language is suffix-convex if it satisfies the condition that, if a word w and its suffix u are in the language, then so is every 
suffix of w that has u as a suffix [1,15]. We are interested only in regular suffix-free languages.

The syntactic complexity of prefix-free languages was proved to be nn−2 in [4]. The syntactic complexities of suffix-, 
bifix-, and factor-free languages were also studied in [4], and the following lower bounds were established (n −1)n−2 +n −2, 
(n −1)n−3 + (n −2)n−3 + (n −3)2n−3, and (n −1)n−3 + (n −3)2n−3 +1, respectively. It was conjectured that these bounds are 
also upper bounds; we prove the conjecture for suffix-free languages in this paper. Moreover, we reduce the alphabet size 
of the witness language reaching the upper bound for suffix-free languages to five letters instead of n + 2, and prove that 
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five is the minimal size. As well, we show that the transition semigroup of a minimal DFA accepting a witness language is 
unique for each n.

A much abbreviated version of these results appeared in [7].

2. Preliminaries

2.1. Languages, automata and transformations

Let � be a finite, non-empty alphabet and let L ⊆ �∗ be a language. The left quotient or simply quotient of a language 
L by a word w ∈ �∗ is denoted by L.w and defined by L.w = {x | wx ∈ L}. A language is regular if and only if it has a 
finite number of quotients. We denote the set of quotients by K = {K0, . . . , Kn−1}, where K0 = L = L.ε by convention. Each 
quotient Ki can be represented also as L.wi , where wi ∈ �∗ is such that L.wi = Ki . The notation Ki .w points out that each 
word w ∈ �∗ performs an action on the set K of quotients (states of the quotient DFA), and leads a quotient (state) Ki to 
quotient (state) Ki .w .

A deterministic finite automaton (DFA) is a quintuple D = (Q , �, δ, q0, F ), where Q is a finite non-empty set of states, �
is a finite non-empty alphabet, δ : Q × � → Q is the transition function, q0 ∈ Q is the initial state, and F ⊆ Q is the set of 
final states. We extend δ to a function δ : Q × �∗ → Q as usual.

The quotient DFA of a regular language L with n quotients is defined by D = (K , �, δD, K0, FD), where δD(Ki, w) =
K j if and only if Ki .w = K j , and FD = {Ki | ε ∈ Ki}. To simplify the notation, without loss of generality we use the set 
Q = {0, . . . , n − 1} of subscripts of quotients as the set of states of D; then D is denoted by D = (Q , �, δ, 0, F ), where 
δ(i, w) = j if δD(Ki, w) = K j , and F is the set of subscripts of quotients in FD . The quotient corresponding to q ∈ Q is then 
Kq = {w | δD(Kq, w) ∈ FD}. The quotient K0 = L is the initial quotient. A quotient is final if it contains ε. A state q is empty
(or a sink state or dead state) if its quotient Kq is empty.

The quotient DFA of L is a minimal DFA of L. The number of states in the quotient DFA of L (the quotient complexity 
of L) is therefore equal to the state complexity of L.

In any DFA, each letter a ∈ � induces a transformation of the set Q of n states. Let TQ be the set of all nn transformations 
of Q ; then TQ is a monoid under composition. The image of q ∈ Q under transformation t is denoted by qt . If s, t are 
transformations of Q , their composition is denoted s ◦ t and defined by q(s ◦ t) = (qs)t; the ◦ is usually omitted. The 
in-degree of a state q in a transformation t is the cardinality of the set {p | pt = q}.

The identity transformation 1 maps each element to itself. For k � 2, a transformation (permutation) t of a set P = {q0,

q1, . . . ,qk−1} ⊆ Q is a k-cycle if q0t = q1, q1t = q2, . . . ,qk−2t = qk−1, qk−1t = q0. A k-cycle is denoted by (q0, q1, . . . , qk−1). 
If a transformation t of Q is a k-cycle of some P ⊆ Q , we say that t has a k-cycle. A transformation has a cycle if it has a 
k-cycle for some k � 2. A 2-cycle (qi, q j) is called a transposition. A transformation is unitary if it changes only one state p
to a state q �= p; it is denoted by (p → q). A transformation is constant if it maps all states to a single state q; it is denoted 
by (Q → q).

The binary relation ωt on Q × Q is defined as follows: For any i, j ∈ Q , i ωt j if and only if itk = jt� for some k, � � 0. 
This is an equivalence relation, and each equivalence class is called an orbit [9] of t . For any i ∈ Q , the orbit of t containing 
i is denoted by ωt(i). An orbit contains either exactly one cycle and no fixed points or exactly one fixed point and no cycles. 
The set of all orbits of t is a partition of Q .

If w ∈ �∗ induces a transformation t , we denote this by w : t . A transformation mapping i to qi for i = 0, . . . , n − 1 is 
sometimes denoted by [q0, . . . , qn−1]. By a slight abuse of notation we sometimes represent the transformation t induced 
by w by w itself, and write qw instead of qt .

The transition semigroup of a DFA D = (Q , �, δ, 0, F ) is the semigroup of transformations of Q generated by the trans-
formations induced by the letters of �. Since the transition semigroup of a minimal DFA of a language L is isomorphic to 
the syntactic semigroup of L [14], syntactic complexity is equal to the cardinality of the transition semigroup.

2.2. Suffix-free languages

For any transformation t , consider the sequence (0, 0t, 0t2, . . . ); we call it the 0-path of t . Since Q is finite, there exist 
i, j such that 0, 0t, . . . , 0ti, 0ti+1, . . . , 0t j−1 are distinct but 0t j = 0ti . The integer j − i is the period of t and if j − i = 1, t is 
initially aperiodic.

Let Q = {0, . . . , n − 1}, and let Q M = {1, . . . , n − 2} (the set of middle states). Let Dn = (Q , �, δ, 0, F ) be a minimal DFA 
accepting a language L, and let T (n) be its transition semigroup. The following observations are well known [4,10]:

Lemma 1. If L is a suffix-free language, then

1. There exists w ∈ �∗ such that L.w = ∅; hence Dn has an empty state, which is state n − 1 by convention.
2. For w, x ∈ �+ , if L.w �= ∅, then L.w �= L.xw.
3. If L.w �= ∅, then L.w = L implies w = ε.
4. For any t ∈ T (n), the 0-path of t in Dn is aperiodic and ends in n − 1.
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