Syntactic complexity of suffix-free languages

Janusz A. Brzozowski ${ }^{\text {a }}$, Marek Szykuła ${ }^{\text {b,* }}$
${ }^{\text {a }}$ David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
${ }^{\mathrm{b}}$ Institute of Computer Science, University of Wrocław, Joliot-Curie 15, PL-50-383 Wrocław, Poland

A R T I C L E I N F O

Article history:

Received 17 October 2015
Available online xxxx

Keywords:

Regular language
Suffix-free
Syntactic complexity
Transition semigroup
Upper bound

Abstract

We solve an open problem concerning syntactic complexity: We prove that the cardinality of the syntactic semigroup of a suffix-free language with n left quotients (that is, with state complexity n) is at most $(n-1)^{n-2}+n-2$ for $n \geqslant 6$. Since this bound is known to be reachable, this settles the problem. We also reduce the alphabet of the witness languages reaching this bound to five letters instead of $n+2$, and show that it cannot be any smaller. Finally, we prove that the transition semigroup of a minimal deterministic automaton accepting a witness language is unique for each n.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The syntactic complexity [8] of a regular language L is the size of its syntactic semigroup [14]. This semigroup is isomorphic to the transition semigroup of the quotient automaton \mathcal{D}, a minimal deterministic finite automaton (DFA) accepting the language. The descriptional complexity of syntactic monoids as a function of minimal DFA size for regular languages was first considered systematically in [11,13].

The number n of states of \mathcal{D} is the state complexity of the language [16], and it is the same as the quotient complexity [3] (number of left quotients) of the language. The syntactic complexity of a class of regular languages is the maximal syntactic complexity of languages in that class expressed as a function of the quotient complexity n.

If $w=u x v$ for some $u, v, x \in \Sigma^{*}$, then u is a prefix of w, v is a suffix of w and x is a factor of w. Prefixes and suffixes of w are also factors of w. A language L is prefix-free (respectively, suffix-free, factor-free) if $w, u \in L$ and u is a prefix (respectively, suffix, factor) of w, then $u=w$. A language is bifix-free if it is both prefix- and suffix-free. These languages play an important role in coding theory, have applications in such areas as cryptography, data compression, and information transmission, and have been studied extensively; see [2] for example. In particular, suffix-free languages (with the exception of $\{\varepsilon\}$, where ε is the empty word) are suffix codes. Moreover, suffix-free languages are special cases of suffix-convex languages, where a language is suffix-convex if it satisfies the condition that, if a word w and its suffix u are in the language, then so is every suffix of w that has u as a suffix $[1,15]$. We are interested only in regular suffix-free languages.

The syntactic complexity of prefix-free languages was proved to be n^{n-2} in [4]. The syntactic complexities of suffix-, bifix-, and factor-free languages were also studied in [4], and the following lower bounds were established $(n-1)^{n-2}+n-2$, $(n-1)^{n-3}+(n-2)^{n-3}+(n-3) 2^{n-3}$, and $(n-1)^{n-3}+(n-3) 2^{n-3}+1$, respectively. It was conjectured that these bounds are also upper bounds; we prove the conjecture for suffix-free languages in this paper. Moreover, we reduce the alphabet size of the witness language reaching the upper bound for suffix-free languages to five letters instead of $n+2$, and prove that

[^0]http://dx.doi.org/10.1016/j.ic.2017.08.014
0890-5401/© 2017 Elsevier Inc. All rights reserved.
five is the minimal size. As well, we show that the transition semigroup of a minimal DFA accepting a witness language is unique for each n.

A much abbreviated version of these results appeared in [7].

2. Preliminaries

2.1. Languages, automata and transformations

Let Σ be a finite, non-empty alphabet and let $L \subseteq \Sigma^{*}$ be a language. The left quotient or simply quotient of a language L by a word $w \in \Sigma^{*}$ is denoted by $L . w$ and defined by $L . w=\{x \mid w x \in L\}$. A language is regular if and only if it has a finite number of quotients. We denote the set of quotients by $K=\left\{K_{0}, \ldots, K_{n-1}\right\}$, where $K_{0}=L=L . \varepsilon$ by convention. Each quotient K_{i} can be represented also as $L . w_{i}$, where $w_{i} \in \Sigma^{*}$ is such that $L . w_{i}=K_{i}$. The notation $K_{i} . w$ points out that each word $w \in \Sigma^{*}$ performs an action on the set K of quotients (states of the quotient DFA), and leads a quotient (state) K_{i} to quotient (state) $K_{i} . w$.

A deterministic finite automaton (DFA) is a quintuple $\mathcal{D}=\left(Q, \Sigma, \delta, q_{0}, F\right)$, where Q is a finite non-empty set of states, Σ is a finite non-empty alphabet, $\delta: Q \times \Sigma \rightarrow Q$ is the transition function, $q_{0} \in Q$ is the initial state, and $F \subseteq Q$ is the set of final states. We extend δ to a function $\delta: Q \times \Sigma^{*} \rightarrow Q$ as usual.

The quotient $D F A$ of a regular language L with n quotients is defined by $\mathcal{D}=\left(K, \Sigma, \delta_{\mathcal{D}}, K_{0}, F_{\mathcal{D}}\right)$, where $\delta_{\mathcal{D}}\left(K_{i}, w\right)=$ K_{j} if and only if $K_{i} \cdot w=K_{j}$, and $F_{\mathcal{D}}=\left\{K_{i} \mid \varepsilon \in K_{i}\right\}$. To simplify the notation, without loss of generality we use the set $Q=\{0, \ldots, n-1\}$ of subscripts of quotients as the set of states of \mathcal{D}; then \mathcal{D} is denoted by $\mathcal{D}=(Q, \Sigma, \delta, 0, F)$, where $\delta(i, w)=j$ if $\delta_{\mathcal{D}}\left(K_{i}, w\right)=K_{j}$, and F is the set of subscripts of quotients in $F_{\mathcal{D}}$. The quotient corresponding to $q \in Q$ is then $K_{q}=\left\{w \mid \delta_{\mathcal{D}}\left(K_{q}, w\right) \in F_{\mathcal{D}}\right\}$. The quotient $K_{0}=L$ is the initial quotient. A quotient is final if it contains ε. A state q is empty (or a sink state or dead state) if its quotient K_{q} is empty.

The quotient DFA of L is a minimal DFA of L. The number of states in the quotient DFA of L (the quotient complexity of L) is therefore equal to the state complexity of L.

In any DFA, each letter $a \in \Sigma$ induces a transformation of the set Q of n states. Let \mathcal{T}_{Q} be the set of all n^{n} transformations of Q; then \mathcal{T}_{Q} is a monoid under composition. The image of $q \in Q$ under transformation t is denoted by $q t$. If s, t are transformations of Q, their composition is denoted $s \circ t$ and defined by $q(s \circ t)=(q s) t$; the \circ is usually omitted. The in-degree of a state q in a transformation t is the cardinality of the set $\{p \mid p t=q\}$.

The identity transformation 1 maps each element to itself. For $k \geqslant 2$, a transformation (permutation) t of a set $P=\left\{q_{0}\right.$, $\left.q_{1}, \ldots, q_{k-1}\right\} \subseteq Q$ is a k-cycle if $q_{0} t=q_{1}, q_{1} t=q_{2}, \ldots, q_{k-2} t=q_{k-1}, q_{k-1} t=q_{0}$. A k-cycle is denoted by $\left(q_{0}, q_{1}, \ldots, q_{k-1}\right)$. If a transformation t of Q is a k-cycle of some $P \subseteq Q$, we say that t has a k-cycle. A transformation has a cycle if it has a k-cycle for some $k \geqslant 2$. A 2-cycle $\left(q_{i}, q_{j}\right)$ is called a transposition. A transformation is unitary if it changes only one state p to a state $q \neq p$; it is denoted by $(p \rightarrow q)$. A transformation is constant if it maps all states to a single state q; it is denoted by ($Q \rightarrow q$).

The binary relation ω_{t} on $Q \times Q$ is defined as follows: For any $i, j \in Q, i \omega_{t} j$ if and only if $i t^{k}=j t^{\ell}$ for some $k, \ell \geqslant 0$. This is an equivalence relation, and each equivalence class is called an orbit [9] of t. For any $i \in Q$, the orbit of t containing i is denoted by $\omega_{t}(i)$. An orbit contains either exactly one cycle and no fixed points or exactly one fixed point and no cycles. The set of all orbits of t is a partition of Q.

If $w \in \Sigma^{*}$ induces a transformation t, we denote this by $w: t$. A transformation mapping i to q_{i} for $i=0, \ldots, n-1$ is sometimes denoted by $\left[q_{0}, \ldots, q_{n-1}\right]$. By a slight abuse of notation we sometimes represent the transformation t induced by w by w itself, and write $q w$ instead of $q t$.

The transition semigroup of a DFA $\mathcal{D}=(Q, \Sigma, \delta, 0, F)$ is the semigroup of transformations of Q generated by the transformations induced by the letters of Σ. Since the transition semigroup of a minimal DFA of a language L is isomorphic to the syntactic semigroup of L [14], syntactic complexity is equal to the cardinality of the transition semigroup.

2.2. Suffix-free languages

For any transformation t, consider the sequence $\left(0,0 t, 0 t^{2}, \ldots\right)$; we call it the 0 -path of t. Since Q is finite, there exist i, j such that $0,0 t, \ldots, 0 t^{i}, 0 t^{i+1}, \ldots, 0 t^{j-1}$ are distinct but $0 t^{j}=0 t^{i}$. The integer $j-i$ is the period of t and if $j-i=1, t$ is initially aperiodic.

Let $Q=\{0, \ldots, n-1\}$, and let $Q_{M}=\{1, \ldots, n-2\}$ (the set of middle states). Let $\mathcal{D}_{n}=(Q, \Sigma, \delta, 0, F)$ be a minimal DFA accepting a language L, and let $T(n)$ be its transition semigroup. The following observations are well known [4,10]:

Lemma 1. If L is a suffix-free language, then

1. There exists $w \in \Sigma^{*}$ such that $L . w=\emptyset$; hence \mathcal{D}_{n} has an empty state, which is state $n-1$ by convention.
2. For $w, x \in \Sigma^{+}$, if L. $w \neq \emptyset$, then L. $w \neq$ L. $x w$.
3. If $L . w \neq \emptyset$, then L. $w=L$ implies $w=\varepsilon$.
4. For any $t \in T(n)$, the 0 -path of t in \mathcal{D}_{n} is aperiodic and ends in $n-1$.

https://daneshyari.com/en/article/6873875

Download Persian Version:

https://daneshyari.com/article/6873875

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: brzozo@uwaterloo.ca (J.A. Brzozowski), msz@cs.uni.wroc.pl (M. Szykuła).

