
JID:YINCO AID:4316 /FLA [m3G; v1.223; Prn:4/10/2017; 9:03] P.1 (1-11)

Information and Computation ••• (••••) •••–•••

Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

On the complexity and decidability of some problems

involving shuffle

Joey Eremondi a,2, Oscar H. Ibarra b,1, Ian McQuillan c,∗,2

a Department of Information and Computing Sciences, Utrecht University, P.O. Box 80.089, 3508 TB Utrecht, The Netherlands
b Department of Computer Science, University of California, Santa Barbara, CA 93106, USA
c Department of Computer Science, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 December 2015
Available online xxxx

Keywords:
Automata and logic
Shuffle
Counter machines
Pushdown machines
Reversal-bounds
Determinism
Commutativity
Strings

The complexity and decidability of various decision problems involving the shuffle
operation (denoted by) are studied. The following three problems are all shown to
be NP-complete: given a nondeterministic finite automaton (NFA) M , and two words u
and v , is L(M) � u v , is u v � L(M), and is L(M) �= u v? It is also shown that
there is a polynomial-time algorithm to determine, for NFAs M1, M2, and a deterministic
pushdown automaton M3, whether L(M1) L(M2) ⊆ L(M3). The same is true when
M1, M2, M3 are one-way nondeterministic l-reversal-bounded k-counter machines, with
M3 being deterministic. Other decidability and complexity results are presented for testing
whether given languages L1, L2, and R from various languages families satisfy L1 L2 ⊆ R ,
and R ⊆ L1 L2. Several closure results on shuffle are also shown.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The shuffle operator models the natural interleaving between strings. It was introduced by Ginsburg and Spanier [1],
where it was shown that context-free languages are closed under shuffle with regular languages, but not context-free
languages. It has since been applied in a number of areas such as concurrency [2], coding theory [3], verification [4],
database schema [5], and biocomputing [3,6], and has also received considerable study in the area of formal languages.
However, there remains a number of open questions, such as the long-standing problem as to whether it is decidable, given
a regular language R to tell if R has a non-trivial decomposition; that is, R = L1 L2, for some L1, L2 that are not the
language consisting of only the empty word [7].

This paper addresses several complexity-theoretic and decidability questions involving shuffle. In the past, similar ques-
tions have been studied by Ogden, Riddle, and Round [2], who showed that there exists deterministic context-free languages
L1, L2 where L1 L2 is NP-complete. More recently, L. Kari studied problems involving solutions to language equations of
the form R = L1 L2, where some of R, L1, L2 are given, and the goal is to determine a procedure, or determine that none
exists, to solve for the variable(s) [8]. Also, there has been similar decidability problems investigated involving shuffle on
trajectories [9], where the patterns of interleaving are restricting according to another language T ⊆ {0, 1}∗ (a zero indicates

* Corresponding author.
E-mail addresses: j.s.eremondi@students.uu.nl (J. Eremondi), ibarra@cs.ucsb.edu (O.H. Ibarra), mcquillan@cs.usask.ca (I. McQuillan).

1 Supported, in part, by NSF Grant CCF-1117708.
2 Supported, in part, by Natural Sciences and Engineering Research Council of Canada Grant 327486-2010.

http://dx.doi.org/10.1016/j.ic.2017.09.002
0890-5401/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ic.2017.09.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
mailto:j.s.eremondi@students.uu.nl
mailto:ibarra@cs.ucsb.edu
mailto:mcquillan@cs.usask.ca
http://dx.doi.org/10.1016/j.ic.2017.09.002

JID:YINCO AID:4316 /FLA [m3G; v1.223; Prn:4/10/2017; 9:03] P.2 (1-11)

2 J. Eremondi et al. / Information and Computation ••• (••••) •••–•••

that a letter from the first operand will be chosen next, and a one indicates a letter from the second operand is chosen).
L. Kari and Sosík show that it is decidable, given L1, L2, R as regular languages with a regular trajectory set T , whether
R = L1 T L2 (the shuffle of L1 and L2 with trajectory set T). Furthermore, if L1 is allowed to be context-free, then the prob-
lem becomes undecidable as long as, for every n ∈ N, there is some word of T with more than n 0’s (with a symmetric result
if there is a context-free language on the right). This implies that it is undecidable whether L1 L2 = R , where R and one
of L1, L2 are regular, and the other is context-free. In [10], it is demonstrated that given two linear context-free languages,
it is not semi-decidable whether their shuffle is linear context-free, and given two deterministic context-free languages, it
is not semi-decidable whether their shuffle is deterministic context-free. Complexity questions involving so-called shuffle
languages, which are augmented from regular expressions by shuffle and iterated shuffle, have also been studied [11]. It has
also been determined that it is NP-hard to determine if a given string is the shuffle of two identical strings (independently
in [12] and [13]).

Recently, there have been several papers involving the shuffle of two words. It was shown that the shuffle of two words
with at least two letters has a unique decomposition into the shuffle of words [14]. In fact, the shuffle of two words, each
with at least two letters, has a unique decomposition over arbitrary sets of words [15]. Also, a polynomial-time algorithm
has been developed that, given a deterministic finite automaton (DFA) M and two words u, v , can test if u v ⊆ L(M) [16].
In the same work, an algorithm was presented that takes a DFA M as input and outputs a “candidate solution” u, v; this
means, if L(M) has a decomposition into the shuffle of two words, u and v must be those two unique words. But the
algorithm cannot guarantee that L(M) has a decomposition. This algorithm runs in O (|u| + |v|) time, which is often far less
than the size of the input DFA, as DFAs accepting the shuffle of two words can be exponentially larger than the words [17].
It has also been shown [18] that the following problem is NP-complete: given a DFA M and two words u, v , is it true that
L(M) � u v?

In this paper, problems are investigated involving three given languages R, L1, L2, and the goal is to determine decid-
ability and complexity of testing if R � L1 L2, L1 L2 � R , and L1 L2 �= R , depending on the language families of L1, L2
and R . In Section 3, it is demonstrated that the following three problems are NP-complete: to determine, given an NFA M
and two words u, v whether u v � L(M) is true, L(M) � u v is true, and u v �= L(M) is true. Then, the DFA algorithm
from [16] that can output a “candidate solution” is extended to an algorithm on NFAs that operates in polynomial time, and
outputs two words u, v such that if the NFA is decomposable into the shuffle of words, then u v is the unique solution.
And in Section 4, decidability and the complexity of testing if L1 L2 ⊆ R is investigated involving more general language
families. In particular, it is shown that it is decidable in polynomial time, given NFAs M1, M2 and a deterministic push-
down automaton M3, whether L(M1) L(M2) ⊆ L(M3). The same is true given M1, M2 that are one-way nondeterministic
l-reversal-bounded k-counter machines, and M3 is a one-way deterministic l-reversal-bounded k-counter machine. How-
ever, if M3 is a nondeterministic 1-counter machine that makes only one reversal on the counter, and M1 and M2 are fixed
DFAs accepting a∗ and b∗ respectively, then the question is undecidable. Also, if we have fixed languages L1 = (a + b)∗ and
L2 = {λ}, and M3 is an NFA, then testing whether L1 L2 � L(M3) is PSPACE-complete. Also, testing whether a∗ {λ} � L
is NP-complete for L accepted by an NFA. For finite languages L1, L2, and L3 accepted by an NPDA, it is NP-complete to
determine if L1 L2 � L3. Results on unary languages are also provided. In Section 5, testing R ⊆ L1 L2 is addressed. This
is already undecidable if R and L1 are deterministic pushdown automata. However, it is decidable if L1, L2 are any commu-
tative, semilinear languages, and R is a context-free language (even if augmented by reversal-bounded counters). Then, in
Section 6, several other decision problems, and some closure properties of shuffle are investigated.

2. Preliminaries

We assume an introductory background in formal language theory and automata [19], as well as computational com-
plexity [20]. We assume knowledge of pushdown automata, finite automata, and Turing machines, and we use notation
from [19]. Let � = {a1, . . . , am} be a finite alphabet. Then �∗ (�+) is the set of all (non-empty) words over �. A language
over � is any L ⊆ �∗ . Given a language L ⊆ �∗ , the complement of L, L = �∗ − L. The length of a word w ∈ �∗ is |w|, and
for a ∈ �, |w|a is the number of a’s in w .

Let N be the positive integers, and N0 be the non-negative integers. For n ∈N0, then define π(n) to be 0 if n = 0, and 1
otherwise.

Next, we formally define reversal-bounded counter machines [21]. A one-way k-counter machine is a tuple M = (k, Q , �,�, δ, q0, F), where Q , �, �, q0, F are respectively, the finite set of states, input alphabet, right input end-marker (not in �),
the initial state, and the set of final states. The transition function δ is a relation from Q × (� ∪ {�}) × {0, 1}k into Q ×
{S, R} × {−1, 0, +1}k , such that if δ(q, a, c1, . . . , ck) contains (p, d, d1, . . . , dk) and ci = 0 for some i, then di ≥ 0 (this is to
prevent negative values in any counter). The symbols S and R give the direction of the input tape head, being either stay or
right respectively. Furthermore, M is deterministic if δ is a partial function. A configuration of M is a tuple (q, w, c1, . . . , ck)

indicating that M is in state q with w (in �∗ or �∗�) as the remaining input, and c1, . . . , ck ∈ N0 are the contents of the
counters. The derivation relation �M is defined by, (q, aw, c1, . . . , ck) �M (p, w ′, c1 + d1, . . . , ck + dk), if (p, d, d1, . . . , dk) ∈
δ(q, a, π(c1), . . . , π(ck)) where d = S implies w ′ = aw , and d = R implies w ′ = w . Then �∗

M is the reflexive, transitive
closure of �M . A word w ∈ �∗ is accepted by M if (q0, w�, 0, . . . , 0) �∗

M (q, �, c1, . . . , ck), for some q ∈ F , c1, . . . , ck ∈ N0.
The language accepted by M , L(M), is the set of all words accepted by M . Essentially, a k-counter machine is a k-pushdown

Download English Version:

https://daneshyari.com/en/article/6873879

Download Persian Version:

https://daneshyari.com/article/6873879

Daneshyari.com

https://daneshyari.com/en/article/6873879
https://daneshyari.com/article/6873879
https://daneshyari.com

