## ARTICLE IN PRESS

Information and Computation ••• (••••) •••-•••



Contents lists available at ScienceDirect

## Information and Computation



YINCO:4316

www.elsevier.com/locate/yinco

# On the complexity and decidability of some problems involving shuffle

Joey Eremondi<sup>a,2</sup>, Oscar H. Ibarra<sup>b,1</sup>, Ian McQuillan<sup>c,\*,2</sup>

<sup>a</sup> Department of Information and Computing Sciences, Utrecht University, P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

<sup>b</sup> Department of Computer Science, University of California, Santa Barbara, CA 93106, USA

<sup>c</sup> Department of Computer Science, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada

#### ARTICLE INFO

Article history: Received 1 December 2015 Available online xxxx

Keywords: Automata and logic Shuffle Counter machines Pushdown machines Reversal-bounds Determinism Commutativity Strings

#### ABSTRACT

The complexity and decidability of various decision problems involving the shuffle operation (denoted by  $\sqcup$ ) are studied. The following three problems are all shown to be NP-complete: given a nondeterministic finite automaton (NFA) M, and two words u and v, is  $L(M) \not\subseteq u \sqcup v$ , is  $u \sqcup v \not\subseteq L(M)$ , and is  $L(M) \neq u \sqcup v$ ? It is also shown that there is a polynomial-time algorithm to determine, for NFAs  $M_1, M_2$ , and a deterministic pushdown automaton  $M_3$ , whether  $L(M_1) \sqcup L(M_2) \subseteq L(M_3)$ . The same is true when  $M_1, M_2, M_3$  are one-way nondeterministic *l*-reversal-bounded *k*-counter machines, with  $M_3$  being deterministic. Other decidability and complexity results are presented for testing whether given languages  $L_1, L_2$ , and *R* from various languages families satisfy  $L_1 \sqcup L_2 \subseteq R$ , and  $R \subseteq L_1 \sqcup L_2$ . Several closure results on shuffle are also shown.

© 2017 Elsevier Inc. All rights reserved.

#### 1. Introduction

The shuffle operator models the natural interleaving between strings. It was introduced by Ginsburg and Spanier [1], where it was shown that context-free languages are closed under shuffle with regular languages, but not context-free languages. It has since been applied in a number of areas such as concurrency [2], coding theory [3], verification [4], database schema [5], and biocomputing [3,6], and has also received considerable study in the area of formal languages. However, there remains a number of open questions, such as the long-standing problem as to whether it is decidable, given a regular language *R* to tell if *R* has a non-trivial decomposition; that is,  $R = L_1 \sqcup L_2$ , for some  $L_1, L_2$  that are not the language consisting of only the empty word [7].

This paper addresses several complexity-theoretic and decidability questions involving shuffle. In the past, similar questions have been studied by Ogden, Riddle, and Round [2], who showed that there exists deterministic context-free languages  $L_1, L_2$  where  $L_1 \sqcup L_2$  is NP-complete. More recently, L. Kari studied problems involving solutions to language equations of the form  $R = L_1 \sqcup L_2$ , where some of  $R, L_1, L_2$  are given, and the goal is to determine a procedure, or determine that none exists, to solve for the variable(s) [8]. Also, there has been similar decidability problems investigated involving shuffle on trajectories [9], where the patterns of interleaving are restricting according to another language  $T \subseteq \{0, 1\}^*$  (a zero indicates

\* Corresponding author.

<sup>1</sup> Supported, in part, by NSF Grant CCF-1117708.

http://dx.doi.org/10.1016/j.ic.2017.09.002 0890-5401/© 2017 Elsevier Inc. All rights reserved.

Please cite this article in press as: J. Eremondi et al., On the complexity and decidability of some problems involving shuffle, Inf. Comput. (2017), http://dx.doi.org/10.1016/j.ic.2017.09.002

E-mail addresses: j.s.eremondi@students.uu.nl (J. Eremondi), ibarra@cs.ucsb.edu (O.H. Ibarra), mcquillan@cs.usask.ca (I. McQuillan).

<sup>&</sup>lt;sup>2</sup> Supported, in part, by Natural Sciences and Engineering Research Council of Canada Grant 327486-2010.

## **ARTICLE IN PRESS**

#### J. Eremondi et al. / Information and Computation ••• (••••) •••-•••

that a letter from the first operand will be chosen next, and a one indicates a letter from the second operand is chosen). L. Kari and Sosík show that it is decidable, given  $L_1, L_2, R$  as regular languages with a regular trajectory set T, whether  $R = L_1 \sqcup_T L_2$  (the shuffle of  $L_1$  and  $L_2$  with trajectory set T). Furthermore, if  $L_1$  is allowed to be context-free, then the problem becomes undecidable as long as, for every  $n \in \mathbb{N}$ , there is some word of T with more than n 0's (with a symmetric result if there is a context-free language on the right). This implies that it is undecidable whether  $L_1 \sqcup L_2 = R$ , where R and one of  $L_1, L_2$  are regular, and the other is context-free. In [10], it is demonstrated that given two linear context-free languages, it is not semi-decidable whether their shuffle is linear context-free. Complexity questions involving so-called *shuffle languages*, which are augmented from regular expressions by shuffle and iterated shuffle, have also been studied [11]. It has also been determined that it is NP-hard to determine if a given string is the shuffle of two identical strings (independently in [12] and [13]).

Recently, there have been several papers involving the shuffle of two words. It was shown that the shuffle of two words with at least two letters has a unique decomposition into the shuffle of words [14]. In fact, the shuffle of two words, each with at least two letters, has a unique decomposition over arbitrary sets of words [15]. Also, a polynomial-time algorithm has been developed that, given a deterministic finite automaton (DFA) M and two words u, v, can test if  $u \sqcup v \subseteq L(M)$  [16]. In the same work, an algorithm was presented that takes a DFA M as input and outputs a "candidate solution" u, v; this means, if L(M) has a decomposition into the shuffle of two words, u and v must be those two unique words. But the algorithm cannot guarantee that L(M) has a decomposition. This algorithm runs in O(|u| + |v|) time, which is often far less than the size of the input DFA, as DFAs accepting the shuffle of two words can be exponentially larger than the words [17]. It has also been shown [18] that the following problem is NP-complete: given a DFA M and two words u, v, is it true that  $L(M) \nsubseteq u \amalg v$ ?

In this paper, problems are investigated involving three given languages  $R, L_1, L_2$ , and the goal is to determine decidability and complexity of testing if  $R \not\subseteq L_1 \sqcup L_2, L_1 \sqcup L_2 \not\subseteq R$ , and  $L_1 \sqcup L_2 \neq R$ , depending on the language families of  $L_1, L_2$ and R. In Section 3, it is demonstrated that the following three problems are NP-complete: to determine, given an NFA M and two words u, v whether  $u \sqcup v \not\subseteq L(M)$  is true,  $L(M) \not\subseteq u \sqcup v$  is true, and  $u \sqcup v \neq L(M)$  is true. Then, the DFA algorithm from [16] that can output a "candidate solution" is extended to an algorithm on NFAs that operates in polynomial time, and outputs two words u, v such that if the NFA is decomposable into the shuffle of words, then  $u \sqcup v$  is the unique solution. And in Section 4, decidability and the complexity of testing if  $L_1 \sqcup L_2 \subseteq R$  is investigated involving more general language families. In particular, it is shown that it is decidable in polynomial time, given NFAs  $M_1, M_2$  and a deterministic pushdown automaton  $M_3$ , whether  $L(M_1) \sqcup L(M_2) \subseteq L(M_3)$ . The same is true given  $M_1, M_2$  that are one-way nondeterministic l-reversal-bounded k-counter machines, and M<sub>3</sub> is a one-way deterministic l-reversal-bounded k-counter machine. However, if  $M_3$  is a nondeterministic 1-counter machine that makes only one reversal on the counter, and  $M_1$  and  $M_2$  are fixed DFAs accepting  $a^*$  and  $b^*$  respectively, then the question is undecidable. Also, if we have fixed languages  $L_1 = (a + b)^*$  and  $L_2 = \{\lambda\}$ , and  $M_3$  is an NFA, then testing whether  $L_1 \sqcup L_2 \not\subseteq L(M_3)$  is PSPACE-complete. Also, testing whether  $a^* \sqcup \{\lambda\} \not\subseteq L$ is NP-complete for L accepted by an NFA. For finite languages  $L_1, L_2$ , and  $L_3$  accepted by an NPDA, it is NP-complete to determine if  $L_1 \sqcup L_2 \not\subseteq L_3$ . Results on unary languages are also provided. In Section 5, testing  $R \subseteq L_1 \sqcup L_2$  is addressed. This is already undecidable if R and  $L_1$  are deterministic pushdown automata. However, it is decidable if  $L_1, L_2$  are any commutative, semilinear languages, and R is a context-free language (even if augmented by reversal-bounded counters). Then, in Section 6, several other decision problems, and some closure properties of shuffle are investigated.

#### 2. Preliminaries

We assume an introductory background in formal language theory and automata [19], as well as computational complexity [20]. We assume knowledge of pushdown automata, finite automata, and Turing machines, and we use notation from [19]. Let  $\Sigma = \{a_1, \ldots, a_m\}$  be a finite alphabet. Then  $\Sigma^*$  ( $\Sigma^+$ ) is the set of all (non-empty) words over  $\Sigma$ . A language over  $\Sigma$  is any  $L \subseteq \Sigma^*$ . Given a language  $L \subseteq \Sigma^*$ , the complement of L,  $\overline{L} = \Sigma^* - L$ . The length of a word  $w \in \Sigma^*$  is |w|, and for  $a \in \Sigma$ ,  $|w|_a$  is the number of *a*'s in *w*.

Let  $\mathbb{N}$  be the positive integers, and  $\mathbb{N}_0$  be the non-negative integers. For  $n \in \mathbb{N}_0$ , then define  $\pi(n)$  to be 0 if n = 0, and 1 otherwise.

Next, we formally define reversal-bounded counter machines [21]. A one-way k-counter machine is a tuple  $M = (k, Q, \Sigma, \lhd, \delta, q_0, F)$ , where  $Q, \Sigma, \lhd, q_0, F$  are respectively, the finite set of states, input alphabet, right input end-marker (not in  $\Sigma$ ), the initial state, and the set of final states. The transition function  $\delta$  is a relation from  $Q \times (\Sigma \cup \{\lhd\}) \times \{0, 1\}^k$  into  $Q \times \{S, R\} \times \{-1, 0, +1\}^k$ , such that if  $\delta(q, a, c_1, \ldots, c_k)$  contains  $(p, d, d_1, \ldots, d_k)$  and  $c_i = 0$  for some *i*, then  $d_i \ge 0$  (this is to prevent negative values in any counter). The symbols S and R give the direction of the input tape head, being either stay or right respectively. Furthermore, *M* is deterministic if  $\delta$  is a partial function. A configuration of *M* is a tuple  $(q, w, c_1, \ldots, c_k)$  indicating that *M* is in state *q* with *w* (in  $\Sigma^* \circ \Gamma \Sigma^* \lhd)$  as the remaining input, and  $c_1, \ldots, c_k \in \mathbb{N}_0$  are the contents of the counters. The derivation relation  $\vdash_M$  is defined by,  $(q, aw, c_1, \ldots, c_k) \vdash_M (p, w', c_1 + d_1, \ldots, c_k + d_k)$ , if  $(p, d, d_1, \ldots, d_k) \in \delta(q, a, \pi(c_1), \ldots, \pi(c_k))$  where d = S implies w' = aw, and d = R implies w' = w. Then  $\vdash_M^*$  is the reflexive, transitive closure of  $\vdash_M$ . A word  $w \in \Sigma^*$  is accepted by *M* if  $(q_0, w \lhd 0, \ldots, 0) \vdash_M^* (q, \lhd, c_1, \ldots, c_k)$ , for some  $q \in F, c_1, \ldots, c_k \in \mathbb{N}_0$ . The language accepted by *M*, L(M), is the set of all words accepted by *M*. Essentially, a *k*-counter machine is a *k*-pushdown

Download English Version:

## https://daneshyari.com/en/article/6873879

Download Persian Version:

https://daneshyari.com/article/6873879

Daneshyari.com