
JID:YINCO AID:4337 /FLA [m3G; v1.227; Prn:20/12/2017; 10:41] P.1 (1-30)

Information and Computation ••• (••••) •••–•••

Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

Distinguishing between communicating transactions ✩

Vasileios Koutavas ∗, Maciej Gazda, Matthew Hennessy

School of Computer Science and Statistics, Trinity College Dublin, Dublin, Ireland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 7 February 2017
Received in revised form 3 September 2017
Available online xxxx

Keywords:
Non-isolated transactions
Communicating transactions
Hennessy–Milner logic
Bisimulation

Communicating transactions is a form of distributed, non-isolated transactions which pro-
vides a simple construct for building concurrent systems. In this paper we develop a logical
framework to express properties of the observable behaviour of such systems. This com-
prises three nominal modal logics which share standard communication modalities but
have distinct past and future modalities involving transactional commits. All three logics
have the same distinguishing power over systems because their associated weak bisim-
ulations coincide with contextual equivalence. Furthermore, they are equally expressive
because there are semantics-preserving translations between their formulae. Using the
logics we can clearly exhibit subtle example inequivalences. This work presents the first
property logics for non-isolated transactions.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Transactional constructs without the isolation principle have been proposed as useful building blocks of distributed
systems (e.g., [10,11,17,23,3,6]). Communicating transactions is such a construct, equipped with a rich theory providing tech-
niques for proving behavioural equivalence of transactional systems [8,9,16]. To develop useful verification tools, however,
it is also essential to have techniques for exhibiting the in-equivalence of systems, rather than relying on the absence of
equivalence proofs.

Numerous existing verification tools accept two formal descriptions of computing systems and determine whether or not
they are behaviourally equivalent (e.g., [13,2,5]), and, crucially, provide coherent explanations as to why two descriptions
are behaviourally distinguishable. Perhaps the most widely cited example is the relationship between the property language
HML and the behavioural equivalence called bisimulation equivalence for processes written in the language CCS, [18]. Two
processes are not equivalent, P �≈ Q , if and only if there is an HML property φ which P enjoys and Q does not, [18,14].
Thus φ can be considered an explanation as to why P and Q have different behaviour. Indeed an algorithm has been
proposed by Cleveland [4] and implemented in the concurrency workbench [5] which, when presented with descriptions of
two finite state processes, either calculates a bisimulation, a formal justification for their behavioural equivalence, or returns
a distinguishing HML formula.

For example consider the CCS process P0 = a.(b.0 + c.0), which performs an a-action, followed by offering a choice
between a b- and a c-action, after which it terminates. According to the definition of bisimulation equivalence, P0 �≈ Q 0,
where Q 0 denotes the slightly different process a.(b.0 +c.0) +a.b.0. Intuitively p1 satisfies the property: whenever it performs

✩ This work was supported by the Science Foundation Ireland grant 13/RC/2094 and co-funded under the European Regional Development Fund through
the Southern & Eastern Regional Operational Programme to Lero – the Irish Software Research Centre.

* Corresponding author.
E-mail addresses: Vasileios.Koutavas@scss.tcd.ie (V. Koutavas), gazdam@scss.tcd.ie (M. Gazda), Matthew.Hennessy@scss.tcd.ie (M. Hennessy).

https://doi.org/10.1016/j.ic.2017.12.001
0890-5401/© 2017 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.ic.2017.12.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
mailto:Vasileios.Koutavas@scss.tcd.ie
mailto:gazdam@scss.tcd.ie
mailto:Matthew.Hennessy@scss.tcd.ie
https://doi.org/10.1016/j.ic.2017.12.001

JID:YINCO AID:4337 /FLA [m3G; v1.227; Prn:20/12/2017; 10:41] P.2 (1-30)

2 V. Koutavas et al. / Information and Computation ••• (••••) •••–•••

an a-action it must be subsequently able to perform a c-action; whereas p2 does not. In HML this property is captured by using
modality operators, [a] for necessity and 〈a〉 for possibility. Thus the property distinguishing P0 from Q 0 is written formally
as [a] 〈c〉true.

The purpose of this paper is to develop similar property logics which characterise contextual equivalence for commu-
nicating transactions. As a formalism we use the abstract language TCCSm , for which a natural contextual equivalence has
been defined and characterised using a form of weak bisimulation over configurations, run-time entities recording the cur-
rent state of the transactional system, together with information on historical interactions with its environment [16].

The transactional language TCCSm is obtained by adding to CCS constructs for describing transactions. For example P1 =
�a.b. co �l d.0� describes a transaction named l which can either perform the sequence of actions a, b in its entirety, or
else fails and performs the action d. The transaction Q 1 = �a.(b. co+c.0) �l d.0� is a slight variation in which there is an
apparent possibility of performing a c-action after a. However if this c-action is performed then the transaction can never
commit (i.e., perform a co-action) and therefore the presence of this potential c-action is superfluous. According to TCCSm

reduction barbed equivalence theory [16] these two transactions are behaviourally equivalent. Consequently an extension of
HML we propose should not be able to distinguish them, despite the fact that Q 1 can apparently perform a c-action or at
least attempt to do so.

The notion of weak bisimulation developed in [16] for transactions contains constraints on the actions which transactions
may perform—the standard transfer property. This in effect compares the future behaviour of transactions. But the definition
of bisimulation also contains constraints on past behaviour, as encoded in configurations. For example, P2 = �a. co �k1 0� |
�b. co �k2 0� can perform actions a and b and reach a state where these actions can be committed independently. On the
other hand Q 2 = νp. �a.p. co+a. co �k1 0� | �b.p. co+b. co �k2 0� can perform the same actions and then, through the
internal communication on p, can only commit the past actions a and b simultaneously. Thus two configurations reachable
starting from P2 and Q 2 are C1 = 〈l1(a), l2(b) • �co �l1 0� | �co �l2 0�〉 and C2 = 〈l(a), l(b) • �co �l 0� | �co �l 0�〉, respec-
tively. In the latter configuration, the two transactions have been merged and thus obtained the same name l. After a single
commit, C1 becomes 〈a, l2(b) • 0 | �co �l2 0�〉 where only past action a is committed. Because there is no matching future
configuration of C2, weak bisimulation from [16] distinguishes the two processes. Thus, to distinguish P2 from Q 2, one
would expect a property logic for transactions containing, in addition to standard future-oriented modal operators discussed
above, operators for examining past behaviour.

In this paper we provide two such property logics, with different past operators. We also provide a property logic with
no past operators; instead a richer collection of future-oriented operators are used. In the example of P2 and Q 2 above,
the first logic, LHasco , using only an additional “has committed” predicate on past actions (Hasco(k)) can express the
inequivalence as the following rather involved formula satisfied by Q 2:

〈x(a)〉 〈y(b)〉 (¬Hasco(x) ∧ 〈τ 〉Hasco(x) ∧ ([τ](Hasco(x) ↔ Hasco(y)))
)

This states that the process can perform an a-action followed by a b-action and reach a state where: (1) the a-action
has not been committed yet; (2) the a-action can be committed after some internal (τ) transitions; and (3) in any future
configurations reachable by τ -transitions, the past a- and b-actions are either both committed or both aborted. Note that
↔ is double implication, and x and y are bound variables representing the transactions performing a and b, respectively.

The second logic, LEq , distinguishes P2 from Q 2 by the significantly simpler formula 〈x(a)〉 〈y(b)〉(x =co y) which
expresses the possibility of performing actions a and b, reaching a state where both have been committed by a single
transaction, possibly as a result of transactional merging. The last logic, LCanco , distinguishes the same processes with the
formula 〈x(a)〉 〈y(b)〉 〈co({x, y})〉true, expressing the possibility of performing a, then b, and then committing both actions
simultaneously.

The main results of the paper include:

• Three property logics for TCCSm , and their natural associated bisimulation relations. The first logic encapsulates the
intuitions on observable past actions from [16]; the second encodes a more powerful predicate on past actions which
we use to write more succinct formulas; the third logic uses only future action modalities giving rise to standard
bisimulation equivalence. All logics include nominal [21,12] versions of the standard HML modal operators, and are
based on a novel labelled transition system for TCCSm .

• Proofs that all logics have the same distinguishing power over TCCSm terms. In effect each of their associated bisimula-
tions precisely coincides with the natural contextual equivalence.

• Proofs that each of the logics are equally expressive. We provide translations between the formulas of the three logics
and show that any property definable in one logic is also expressible in each of the other two.

The remainder of the paper is organised as follows. First in Section 2 we recall the theory of TCCSm from [16], in
particular recalling the definition of bisimulation over configurations which characterises the natural contextual equivalence
for transactions. Then in Section 3 we first explain the expressive deficiencies in this notion of configuration; that is the
limited access it gives to past behaviour. We then propose a more expressive notion of extended configuration, together with a
new notion of bisimulation, Hasco-bisimulation, over these extended configurations. This is similar in style to that in [16];
a transfer condition between possible actions puts requirements on the future behaviour of processes, while predicates

Download English Version:

https://daneshyari.com/en/article/6873889

Download Persian Version:

https://daneshyari.com/article/6873889

Daneshyari.com

https://daneshyari.com/en/article/6873889
https://daneshyari.com/article/6873889
https://daneshyari.com

