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We prove a complexity dichotomy theorem for the six-vertex model. For every setting of 
the parameters of the model, we prove that computing the partition function is either 
solvable in polynomial time or #P-hard. The dichotomy criterion is explicit.
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1. Introduction

A primary purpose of complexity theory is to provide classifications to computational problems according to their in-
herent computational difficulty. While computational problems can come from many sources, a class of problems from 
statistical mechanics has a remarkable affinity to what is naturally studied in complexity theory. These are the sum-of-
product computations, a.k.a. partition functions in physics.

Well-known examples of partition functions from physics that have been investigated intensively in complexity theory 
include the Ising model and Potts model [10,8,7,12]. Most of these are spin systems. Spin systems as well as the more 
general counting constraint satisfaction problems (#CSP) are special cases of Holant problems [5] (see Section 2 for defi-
nitions). Roughly speaking, Holant problems are tensor networks where edges of a graph are variables while vertices are 
local constraint functions; by contrast, in spin systems vertices are variables and edges are (binary) constraint functions. 
Spin systems can be simulated easily as Holant problems, but Freedman, Lovász and Schrijver proved that simulation in 
the reverse direction is generally not possible [6]. In this paper we study a family of partition functions that fit the Holant 
problems naturally, but not as a spin system. This is the six-vertex model.

The six-vertex model in statistical mechanics concerns crystal lattices with hydrogen bonds. Remarkably it can be ex-
pressed perfectly as a family of Holant problems with 6 parameters for the associated signatures, although in physics people 
are more focused on regular structures such as lattice graphs, and asymptotic limit. In this paper we study the partition 
functions of six-vertex models purely from a complexity theoretic view, and prove a complete classification of these Holant 
problems, where the 6 parameters can be arbitrary complex numbers.
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Fig. 1. Valid configurations of the six-vertex model.

The first model in the family of six-vertex models was introduced by Linus Pauling in 1935 to account for the residual 
entropy of water ice [17]. Suppose we have a large number of oxygen atoms. Each oxygen atom is connected by a bond 
to four other neighboring oxygen atoms, and each bond is occupied by one hydrogen atom between two oxygen atoms. 
Physical constraint requires that the hydrogen is closer to either one or the other of the two neighboring oxygens, but never 
in the middle of the bond. Pauling argued [17] that, furthermore, the allowed configuration of hydrogen atoms is such that 
at each oxygen site, exactly two hydrogens are closer to it, and the other two are farther away. The placement of oxygen and 
hydrogen atoms can be naturally represented by vertices and edges of a 4-regular graph. The constraint on the placement of 
hydrogens can be represented by an orientation of the edges of the graph, such that at every vertex, exactly two edges are 
oriented toward the vertex, and exactly two edges are oriented away from it. In other words, this is an Eulerian orientation. 
Since there are 

(4
2

) = 6 local valid configurations, this is called the six-vertex model. In addition to water ice, potassium 
dihydrogen phosphate KH2PO4 (KDP) also satisfies this model.

The valid local configurations of the six-vertex model are illustrated in Fig. 1. There are parameters ε1, ε2, . . . , ε6 as-
sociated with each type of the local configuration. The total energy E is given by E = n1ε1 + n2ε2 + . . . + n6ε6, where ni
is the number of local configurations of type i. Then the partition function is Z = ∑

e−E/kB T , where the sum is over all 
valid configurations, kB is Boltzmann’s constant, and T is the system’s temperature. Mathematically, this is a sum-of-product
computation where the sum is over all Eulerian orientations of the graph, and the product is over all vertices where each 
vertex contributes a factor ci = cεi if it is in configuration i (1 ≤ i ≤ 6) for some constant c.

Some choices of the parameters are well-studied. On the square lattice graph, when modeling ice one takes ε1 = ε2 =
. . . = ε6 = 0. In 1967, Elliott Lieb [14] famously showed that, as the number N of vertices approaches ∞, the value of 

the “partition function per vertex” W = Z 1/N approaches 
(

4
3

)3/2 ≈ 1.5396007 . . . (Lieb’s square ice constant). This matched 
experimental data 1.540 ± 0.001 so well that it is considered a triumph. The case ε1 = ε2 = . . . = ε6 = 0 is precisely 
the problem of counting the number of Eulerian orientations on 4-regular graphs. Mihail and Winkler [16] showed that 
counting the number of Eulerian orientations (on a general even degree graph, called an Euler graph) is #P-hard, and gave 
a fully polynomial randomized approximation scheme (fpras) for it. Huang and Lu [9] proved that the problem remains 
#P-hard for 4-regular graphs, which is exactly the special case for the six-vertex model with ε1 = ε2 = . . . = ε6 = 0. They 
proved this by a reduction from the #P-hardness of T G(3, 3), the evaluation at (3, 3) of the Tutte polynomial T G , due to 
Las Vergnas [11]. On (4-regular) planar graphs, T G(3, 3) is actually exactly equivalent to a specific six-vertex model; in the 

notation of Section 2, it is specified by the signature matrix 

⎡
⎣

0 0 0 1
0 1 2 0
0 2 1 0
1 0 0 0

⎤
⎦. Welsh has pointed out that T G (0, −2) is equivalent 

to counting the number of Eulerian orientations on 4-regular graphs [21]. Luby, Randall and Sinclair [15] gave sampling 
algorithms for Eulerian orientations on simply connected regions of the grid graph with boundary conditions.

There are other well-known choices in the six-vertex model family. The KDP model of a ferroelectric is to set ε1 = ε2 = 0, 
and ε3 = ε4 = ε5 = ε6 > 0. The Rys F model of an antiferroelectric is to set ε1 = ε2 = ε3 = ε4 > 0, and ε5 = ε6 = 0. When 
there is no ambient electric field, the model chooses the zero field assumption: ε1 = ε2, ε3 = ε4, and ε5 = ε6. Historically 
these are widely considered among the most significant applications ever made of statistical mechanics to real substances. 
In classical statistical mechanics the parameters are all real numbers while in quantum theory the parameters are complex 
numbers in general.

In this paper, we give a complete classification of the complexity of calculating the partition function Z on any 4-regular 
graph defined by an arbitrary choice parameter values c1, c2, . . . , c6 ∈ C. (To state our theorem in strict Turing machine 
model, we take c1, c2, . . . , c6 to be algebraic numbers.) Depending on the setting of these values, we show that the partition 
function Z is either computable in polynomial time, or it is #P-hard, with nothing in between. The dependence of this 
dichotomy on the values c1, c2, . . . , c6 is explicit.

A number of complexity dichotomy theorems for counting problems have been proved previously. These are mostly 
on spin systems, or on #CSPs (counting Constraint Satisfaction Problems), or on Holant problems with symmetric local 
constraint functions. #CSP is the special case of Holant problems where Equalities of all arities are auxiliary functions 
assumed to be present. Spin systems are a further specialization of #CSP, where there is a single binary constraint function 
(see Section 2). The six-vertex model cannot be expressed as a #CSP problem. It is a Holant problem where the constraint 
functions are not symmetric. Thus previous dichotomy theorems do not apply. This is the first complexity dichotomy theorem 
proved for a class of Holant problems on non-symmetric constraint functions and without auxiliary functions assumed to be 
present.

However, one important technical ingredient of our proof is to discover a direct connection between some subset of the 
six-vertex models with spin systems. Another technical highlight is a new interpolation technique that carves out subsums 



Download English Version:

https://daneshyari.com/en/article/6873894

Download Persian Version:

https://daneshyari.com/article/6873894

Daneshyari.com

https://daneshyari.com/en/article/6873894
https://daneshyari.com/article/6873894
https://daneshyari.com

