
Information and Computation 241 (2015) 62–95

Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

Quantitative classical realizability

Aloïs Brunel

LIPN – UMR CNRS 7030 – Université Paris 13, Villetaneuse, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 20 January 2012
Available online 17 October 2014

Introduced by Dal Lago and Hofmann, quantitative realizability is a technique used to 
define models for logics based on Multiplicative Linear Logic. A particularity is that 
functions are interpreted as bounded time computable functions. It has been used to 
give new and uniform proofs of soundness of several type systems with respect to 
certain time complexity classes. We propose a reformulation of their ideas in the setting 
of Krivine’s classical realizability. The framework obtained generalizes Dal Lago and 
Hofmann’s realizability, and reveals deep connections between quantitative realizability 
and a linear variant of Cohen’s forcing.

© 2014 Published by Elsevier Inc.

1. Introduction

Ever since its introduction by J.L. Krivine [12], the theory of classical realizability has raised a growing interest. Initially 
designed to study the computational content of classical proofs through the Curry–Howard correspondence, it has led to 
promising results in various fields. One could mention the recent advances [15] made by Krivine in the elaboration of new 
models of the ZF axiomatic set theory. Another success has been its use to define and justify a classical extraction procedure 
for the proof assistant Coq [21].

Forcing — Forcing is a technique designed by Cohen [4] to prove the independence of the Continuum Hypothesis (CH) from
ZFC. The idea is to define a formula transformation which turns every formula A into a new one noted p � A, where p
is a forcing condition. By choosing a suitable set of forcing conditions, one can prove the statement p � ¬C H . It has been 
recently shown by Krivine [14] that combining classical realizability and forcing is possible. This construction can be seen as 
a generalization of forcing iteration and makes possible a study of forcing through the Curry–Howard isomorphism: Krivine 
has shown that the forcing technique not only provides a logical translation but also a program transformation. Following 
that work, Miquel [22] has introduced an abstract machine (the Krivine Forcing Abstract Machine, or KFAM) that internalizes 
the computational behavior of programs obtained via this transformation. One remarkable feature of this machine is that it 
provides sophisticated programming features like memory cells or program execution tracing.

Resource sensitive realizability — Realizability techniques have also been fruitfully applied to implicit complexity. This re-
search field aims at providing machine-independent characterizations of complexity classes (such as polynomial time or 
logspace functions). One of the possible approaches is to use linear logic based type systems to constrain programs enough 
so that they enjoy bounded-time normalization properties. Proving these properties can be achieved using semantic tech-
niques. Following different works [9,10], Dal Lago and Hofmann have introduced in [18] a quantitative (another word for 
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resource sensitive) framework based on Kleene realizability [11]. One of the crucial ideas behind Dal Lago and Hofmann’s 
work is to consider bounded-time λ-terms as realizers. Bounds are described using elements of a resource monoid. No mat-
ter what resource monoid is chosen, their framework always yields a model of second-order Multiplicative Affine Logic 
(MAL). Various systems extending MAL are then dealt with by choosing a suitable resource monoid, while the basic real-
izability constructions are unchanged. This work has offered new and uniform proofs of the soundness theorems for LAL,
EAL, SAL and BLL with respect to the associated complexity classes [16–18]. In [3], Terui and the author gave a new char-
acterization of the complexity class FP (the functions computable in polynomial time) and used a variant of Dal Lago and 
Hofmann’s realizability to show the soundness part of this result.

The present work aims at applying methodology and tools coming from classical realizability to generalize the frame-
work proposed by Dal Lago and Hofmann, and to reveal deep connections between quantitative realizability and forcing 
techniques.

Quantitative classical realizability — We propose a new quantitative framework, based on Munch’s classical realizability for 
focalizing system L (or L f oc) [23], a term calculus for classical logic LC [8]. We extend this realizability using the notion 
of quantitative monoid, which derives from the resource monoid structure introduced by Dal Lago and Hofmann. We show 
that, whatever the quantitative monoid, this framework always gives rise to a model of the Multiplicative Affine fragment 
of Higher-order Classical Arithmetic (abbreviated MALω). By choosing different quantitative monoids, we obtain models of 
logics extending MALω. Because all resource monoids in the sense of [18] are also quantitative monoids, we can in principle 
obtain models for all the systems treated in [17,18], although we only exhibit a model of Soft Affine Logic (SAL) [2].

Quantitative reducibility candidates — By carefully setting parameters of classical realizability, one can retrieve the notion 
of reducibility candidates (presented using orthogonality, as in [7,19,24,25]), which is used to prove normalization proper-
ties. Similarly, in our setting, we are able to define a quantitative extension of this technique, which we call quantitative 
reducibility candidates. It allows us to semantically prove complexity properties of programs that are typable in the logic we 
interpret. Moreover, because we work with a term calculus which generalizes both call-by-name and call-by-value classical 
λ-calculi, these complexity properties are transferred for free to these calculi. Hence, we are able to retrieve and generalize 
the bounded-time termination results proved in [17,18].

A forcing decomposition — Quantitative classical realizability is deeply connected with a certain notion of forcing, which we 
propose to study. We formalize inside MALω a forcing transformation on Multiplicative Linear Logic (MAL) formulas, called 
linear forcing. Then, following Miquel’s methodology [22], we propose an abstract machine designed to execute programs 
obtained by a specific linear forcing instance. A connection lemma is proved, which shows that composing this instance of 
linear forcing with a non-quantitative realizability built upon this machine always yields a quantitative realizability model. 
Finally, using this result, we show how quantitative reducibility candidates (restricted to MAL) arise from the composition 
of usual reducibility candidates with forcing.

Outline — Sections 2 and 3 introduce MALω and its quantitative realizability interpretation. The model of quantitative 
reducibility candidates is then defined and used to prove a bounded time termination property of MALω. In Section 4, we 
show by taking SAL as an example that this interpretation and the corresponding complexity result can be extended to 
larger type systems. Finally, we introduce in Section 5 the linear forcing interpretation of MAL and prove the accompanying 
decomposition results.

2. The calculus

In this section, we describe the system MALω. It is based on the MAL type system for Munch’s focalizing system L [23], 
extended with higher-order quantifications and arithmetical operations. Logically, it is a fragment of classical higher-order 
Peano arithmetic (abbreviated by PAω). The syntax of MALω is divided in three distinct layers: the terms, the type con-
structors and the kinds. The language of terms, which we shall use to express both proof-terms and realizers, is based on 
the multiplicative fragment of L f oc , extended with extra instructions. The type constructors layer is an adaptation of the 
higher-order terms syntax of PAω [22] to linear logic: it can be seen as a combination of the languages of PAω and classical 
Fω [19]. Finally, kinds are used as a simple type system for type constructors.
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