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We prove that it is semi-decidable whether the runtime complexity of a term rewrite 
system is constant. Our semi-decision procedure exploits that constant runtime complexity 
is equivalent to termination of a restricted form of narrowing, which can be examined 
by considering finitely many start terms. We implemented our semi-decision procedure in 
the tool AProVE to show its efficiency and its success for systems where state-of-the-art 
complexity analysis tools fail.
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1. Introduction

There are many techniques to infer upper bounds on 
the runtime complexity of term rewrite systems (TRSs) or 
closely related formalisms. As “runtime complexity” corre-
sponds to the usual notion of program complexity, such 
techniques can be used to analyze the complexity of pro-
grams in real-world languages via suitable transformations 
[6,8,14]. Usually, complexity bounds are inferred to provide 
guarantees on a program’s resource usage. But constant
bounds are also important for detecting bugs, as constant-
time algorithms cannot fully traverse their in- or output if 
it exceeds a certain size. Thus, if there is a constant bound 
for an algorithm which is supposed to traverse arbitrar-
ily large data, then the algorithm is incorrect. To find such 
bugs in real programs, one would have to combine our re-
sults with corresponding transformations from programs to 
TRSs.
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In this paper we prove that it is semi-decidable if the 
runtime complexity of a TRS is constant. A similar result 
is known for Turing Machines [12].1 Note that in gen-
eral there is no complexity-preserving transformation from 
one language to another, i.e., semi-decidability of constant 
bounds for one language does not imply semi-decidability 
for other Turing-complete languages (like term rewriting). 
After introducing preliminaries in Sect. 2, we present our 
semi-decision procedure in Sect. 3. Sect. 4 discusses related 
work and shows the efficiency of our procedure by evalu-
ating our implementation in the tool AProVE [9].

2. Preliminaries

We recapitulate the main notions for TRSs [4]. T (�, V)

is the set of terms over a finite signature � and the vari-

1 However, Turing Machines and TRSs are inherently different. For ex-
ample, Turing Machines only read a constant part of the input in constant 
time, whereas TRSs can copy the whole input in constant time using du-
plicating rules like f(x) → g(x, x). Similarly, TRSs can compare the whole 
input in constant time using non-left-linear rules like f(x, x) → g(x), etc.
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ables V , where V(t) is the set of variables occurring in t
and root(t) is the root symbol of a term t /∈ V . The posi-
tions pos(t) ⊂ N

∗ are {ε} if t ∈ V and {ε} ∪ ⋃k
i=1{i.π | π ∈

pos(ti)} if t = f (t1, . . . , tk). The subterm of t at position 
π ∈ pos(t) is t|π = t if π = ε and t|π = ti |π ′ if π = i.π ′
and t = f (t1, . . . , tk). The term that results from replac-
ing t|π with s ∈ T (�, V) is t[s]π . The size of a term is 
|x| = 1 if x ∈ V and | f (t1, . . . , tk)| = 1 + ∑k

i=1 |ti |. A TRS R
is a finite set of rules {�1 → r1, . . . , �n → rn} with �i, ri ∈
T (�, V), �i /∈ V , and V(ri) ⊆ V(�i) for all 1 ≤ i ≤ n. The 
rewrite relation is defined as s →R t if there are π ∈ pos(s), 
� → r ∈ R, and a substitution σ such that s|π = �σ and 
t = s[rσ ]π . Here, �σ is the redex of the rewrite step. For 
two terms s and t , s →n

R t stands for a rewrite sequence 
s = s0 →R s1 →R · · · →R sn−1 →R sn = t for some terms 
s1, . . . , sn−1. The defined (resp. constructor) symbols of R
are �d(R) = {root(�) | � → r ∈R} and �c(R) = � \�d(R). 
A term f (t1, . . . , tk) is basic if f ∈ �d(R) and t1, . . . , tk are 
constructor terms (i.e., t1, . . . , tk ∈ T (�c(R), V)).

Example 1. The following TRS R is a variation of the ex-
ample SK90/4.51 from the Termination Problems Data 
Base (TPDB) [18] where two rules which are not reachable 
from basic terms were removed for the sake of clarity.

f(a) → g(h(a)) h(g(x)) → g(h(f(x)))

We have �d(R) = {f, h}, �c(R) = {g, a}, and x ∈ V . An ex-
ample rewrite sequence (where the underlined subterms 
are the redexes) is

h(g(a)) →R g(h(f(a))) →R g(h(g(h(a))))

→R g(g(h(f(h(a))))).

We now define the runtime complexity of a TRS R. In 
the following definition, ω is the smallest infinite ordinal 
and hence, ω > n holds for all n ∈ N. For any M ⊆ N ∪ {ω}, 
sup M is the least upper bound of M .

Definition 2 (Runtime complexity [10,11,15]). The derivation 
height of a term t w.r.t. a relation → is the length of 
the longest sequence of →-steps starting with t , i.e., dh(t,
→) = sup{n ∈ N | t′ ∈ T (�, V), t →n t′}. Thus, dh(t,→) =
ω if t starts an infinite →-sequence. The runtime com-
plexity function rcR maps any m ∈ N to the length of 
the longest →R -sequence starting with a basic term 
whose size is at most m, i.e., rcR(m) = sup{dh(t, →R ) |
t is basic, |t| ≤ m}.

Example 3. There is no longer →R-sequence for h(g(a))

than the one in Example 1, i.e., dh(h(g(a)), →R ) = 3. So 
|h(g(a))| = 3 implies rcR(3) ≥ 3. Our new approach proves 
rcR(m) ∈ O(1) automatically, i.e., R has constant runtime 
complexity.

So our goal is to check whether there is an n ∈ N such 
that all evaluations of basic terms take at most n steps. Our 
semi-decision procedure is based on narrowing, which is 
similar to rewriting, but uses unification instead of match-
ing.

Definition 4 (Narrowing). A substitution σ is a unifier of 
s, t ∈ T (�, V) if sσ = tσ , and σ is the most general unifier
(mgu) if every unifier has the form σ ◦ θ for some sub-
stitution θ . A term s narrows to t (s σ

π R t) if there is a 
position π ∈ pos(s) with s|π /∈ V , a (variable-renamed) rule 
� → r ∈ R with σ = mgu(s|π , �), and t = s[r]πσ . We omit

π or σ if they are irrelevant and write s 
σ1◦···◦ σn n

R t or 
s n

R t if we have s 
σ1

R · · · σn

R t . A finite narrowing se-
quence t0

σ1

R · · · σn

R tn is constructor based if t0 σ1 · · ·σn

is a basic term. An infinite narrowing sequence is construc-
tor based if all its finite prefixes are constructor based.

Example 5. R from Example 1 has the constructor-based 
narrowing sequence

h(x)
{x/g(x′)}

ε R g(h(f(x′))) {x′/a}
1.1 R g(h(g(h(a))))

∅

1 R g(g(h(f(h(a))))).

3. Constant bounds for runtime complexity of term 
rewriting

For our semi-decision procedure, we will show that the 
runtime complexity of a TRS R is constant iff R has no 
infinite constructor-based narrowing sequence.

Example 6. To see why constructor-based narrowing termi-
nates for R of Example 1, first consider sequences starting 
with basic terms of the form h(t). If t ∈ V , then narrow-
ing h(t) terminates after three steps, cf. Example 5. The 
same holds if t = g(t′) with t′ ∈ V or t′ = a. For other con-
structor terms t′ , narrowing h(g(t′)) terminates after one 
step. Finally, if t /∈ V and root(t) �= g, then h(t) is a nor-
mal form w.r.t. R . Now we consider basic start terms 
f(t). If t ∈ V or t = a, then narrowing f(t) terminates after 
one step: f(t) R g(h(a)). If t �= a is a non-variable con-
structor term, then f(t) is a normal form w.r.t. R . This 
covers all constructor-based narrowing sequences, i.e., R’s 
runtime complexity is constant.

In contrast, if we change the second rule to h(g(x)) →
g(h(x)), then the runtime complexity becomes linear and 
constructor-based narrowing becomes non-terminating:

h(x)
{x/g(x′)}

R g(h(x′)) {x′/g(x′′)}
R g(g(h(x′′))) R · · · .

Unfortunately, the reasoning in Example 6 is hard to 
automate, since it explicitly considers all sequences that 
start with any of the infinitely many basic terms. For au-
tomation, we show that constructor-based narrowing se-
quences can be “generalized” such that one only has to 
regard finitely many start terms. Then a semi-decision pro-
cedure for termination of constructor-based narrowing is 
obtained by enumerating only those sequences that begin 
with these start terms.

We first define a partial ordering � that clarifies which 
narrowing sequences are more general than others, and 
prove the equivalence between constant runtime and ter-
mination of constructor-based narrowing afterwards.

Definition 7 (Ordering narrowing sequences). Let R be a TRS 
and let s0

σ1
π1 R s1

σ2
π2 R · · · σn

πn R sn and t0
θ1
π1 R t1

θ2
π2 R
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