
Information Processing Letters 139 (2018) 18–23

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Constant runtime complexity of term rewriting is

semi-decidable

Florian Frohn, Jürgen Giesl ∗

LuFG Informatik 2, RWTH Aachen University, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 April 2018
Received in revised form 22 June 2018
Accepted 27 June 2018
Available online xxxx
Communicated by José Luiz Fiadeiro

Keywords:
Computational complexity
Decidability
Formal methods
Program correctness
Term rewriting

We prove that it is semi-decidable whether the runtime complexity of a term rewrite
system is constant. Our semi-decision procedure exploits that constant runtime complexity
is equivalent to termination of a restricted form of narrowing, which can be examined
by considering finitely many start terms. We implemented our semi-decision procedure in
the tool AProVE to show its efficiency and its success for systems where state-of-the-art
complexity analysis tools fail.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

There are many techniques to infer upper bounds on
the runtime complexity of term rewrite systems (TRSs) or
closely related formalisms. As “runtime complexity” corre-
sponds to the usual notion of program complexity, such
techniques can be used to analyze the complexity of pro-
grams in real-world languages via suitable transformations
[6,8,14]. Usually, complexity bounds are inferred to provide
guarantees on a program’s resource usage. But constant
bounds are also important for detecting bugs, as constant-
time algorithms cannot fully traverse their in- or output if
it exceeds a certain size. Thus, if there is a constant bound
for an algorithm which is supposed to traverse arbitrar-
ily large data, then the algorithm is incorrect. To find such
bugs in real programs, one would have to combine our re-
sults with corresponding transformations from programs to
TRSs.

* Corresponding author.
E-mail address: giesl@informatik.rwth-aachen.de (J. Giesl).

In this paper we prove that it is semi-decidable if the
runtime complexity of a TRS is constant. A similar result
is known for Turing Machines [12].1 Note that in gen-
eral there is no complexity-preserving transformation from
one language to another, i.e., semi-decidability of constant
bounds for one language does not imply semi-decidability
for other Turing-complete languages (like term rewriting).
After introducing preliminaries in Sect. 2, we present our
semi-decision procedure in Sect. 3. Sect. 4 discusses related
work and shows the efficiency of our procedure by evalu-
ating our implementation in the tool AProVE [9].

2. Preliminaries

We recapitulate the main notions for TRSs [4]. T (�, V)

is the set of terms over a finite signature � and the vari-

1 However, Turing Machines and TRSs are inherently different. For ex-
ample, Turing Machines only read a constant part of the input in constant
time, whereas TRSs can copy the whole input in constant time using du-
plicating rules like f(x) → g(x, x). Similarly, TRSs can compare the whole
input in constant time using non-left-linear rules like f(x, x) → g(x), etc.

https://doi.org/10.1016/j.ipl.2018.06.012
0020-0190/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.ipl.2018.06.012
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:giesl@informatik.rwth-aachen.de
https://doi.org/10.1016/j.ipl.2018.06.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2018.06.012&domain=pdf

F. Frohn, J. Giesl / Information Processing Letters 139 (2018) 18–23 19

ables V , where V(t) is the set of variables occurring in t
and root(t) is the root symbol of a term t /∈ V . The posi-
tions pos(t) ⊂ N

∗ are {ε} if t ∈ V and {ε} ∪ ⋃k
i=1{i.π | π ∈

pos(ti)} if t = f (t1, . . . , tk). The subterm of t at position
π ∈ pos(t) is t|π = t if π = ε and t|π = ti |π ′ if π = i.π ′
and t = f (t1, . . . , tk). The term that results from replac-
ing t|π with s ∈ T (�, V) is t[s]π . The size of a term is
|x| = 1 if x ∈ V and | f (t1, . . . , tk)| = 1 + ∑k

i=1 |ti |. A TRS R
is a finite set of rules {�1 → r1, . . . , �n → rn} with �i, ri ∈
T (�, V), �i /∈ V , and V(ri) ⊆ V(�i) for all 1 ≤ i ≤ n. The
rewrite relation is defined as s →R t if there are π ∈ pos(s),
� → r ∈ R, and a substitution σ such that s|π = �σ and
t = s[rσ]π . Here, �σ is the redex of the rewrite step. For
two terms s and t , s →n

R t stands for a rewrite sequence
s = s0 →R s1 →R · · · →R sn−1 →R sn = t for some terms
s1, . . . , sn−1. The defined (resp. constructor) symbols of R
are �d(R) = {root(�) | � → r ∈R} and �c(R) = � \�d(R).
A term f (t1, . . . , tk) is basic if f ∈ �d(R) and t1, . . . , tk are
constructor terms (i.e., t1, . . . , tk ∈ T (�c(R), V)).

Example 1. The following TRS R is a variation of the ex-
ample SK90/4.51 from the Termination Problems Data
Base (TPDB) [18] where two rules which are not reachable
from basic terms were removed for the sake of clarity.

f(a) → g(h(a)) h(g(x)) → g(h(f(x)))

We have �d(R) = {f, h}, �c(R) = {g, a}, and x ∈ V . An ex-
ample rewrite sequence (where the underlined subterms
are the redexes) is

h(g(a)) →R g(h(f(a))) →R g(h(g(h(a))))

→R g(g(h(f(h(a))))).

We now define the runtime complexity of a TRS R. In
the following definition, ω is the smallest infinite ordinal
and hence, ω > n holds for all n ∈ N. For any M ⊆ N ∪ {ω},
sup M is the least upper bound of M .

Definition 2 (Runtime complexity [10,11,15]). The derivation
height of a term t w.r.t. a relation → is the length of
the longest sequence of →-steps starting with t , i.e., dh(t,
→) = sup{n ∈ N | t′ ∈ T (�, V), t →n t′}. Thus, dh(t,→) =
ω if t starts an infinite →-sequence. The runtime com-
plexity function rcR maps any m ∈ N to the length of
the longest →R -sequence starting with a basic term
whose size is at most m, i.e., rcR(m) = sup{dh(t, →R) |
t is basic, |t| ≤ m}.

Example 3. There is no longer →R-sequence for h(g(a))

than the one in Example 1, i.e., dh(h(g(a)), →R) = 3. So
|h(g(a))| = 3 implies rcR(3) ≥ 3. Our new approach proves
rcR(m) ∈ O(1) automatically, i.e., R has constant runtime
complexity.

So our goal is to check whether there is an n ∈ N such
that all evaluations of basic terms take at most n steps. Our
semi-decision procedure is based on narrowing, which is
similar to rewriting, but uses unification instead of match-
ing.

Definition 4 (Narrowing). A substitution σ is a unifier of
s, t ∈ T (�, V) if sσ = tσ , and σ is the most general unifier
(mgu) if every unifier has the form σ ◦ θ for some sub-
stitution θ . A term s narrows to t (s σ

π R t) if there is a
position π ∈ pos(s) with s|π /∈ V , a (variable-renamed) rule
� → r ∈ R with σ = mgu(s|π , �), and t = s[r]πσ . We omit

π or σ if they are irrelevant and write s
σ1◦···◦ σn n

R t or
s n

R t if we have s
σ1

R · · · σn

R t . A finite narrowing se-
quence t0

σ1

R · · · σn

R tn is constructor based if t0 σ1 · · ·σn

is a basic term. An infinite narrowing sequence is construc-
tor based if all its finite prefixes are constructor based.

Example 5. R from Example 1 has the constructor-based
narrowing sequence

h(x)
{x/g(x′)}

ε R g(h(f(x′))) {x′/a}
1.1 R g(h(g(h(a))))

∅

1 R g(g(h(f(h(a))))).

3. Constant bounds for runtime complexity of term
rewriting

For our semi-decision procedure, we will show that the
runtime complexity of a TRS R is constant iff R has no
infinite constructor-based narrowing sequence.

Example 6. To see why constructor-based narrowing termi-
nates for R of Example 1, first consider sequences starting
with basic terms of the form h(t). If t ∈ V , then narrow-
ing h(t) terminates after three steps, cf. Example 5. The
same holds if t = g(t′) with t′ ∈ V or t′ = a. For other con-
structor terms t′ , narrowing h(g(t′)) terminates after one
step. Finally, if t /∈ V and root(t) �= g, then h(t) is a nor-
mal form w.r.t. R . Now we consider basic start terms
f(t). If t ∈ V or t = a, then narrowing f(t) terminates after
one step: f(t) R g(h(a)). If t �= a is a non-variable con-
structor term, then f(t) is a normal form w.r.t. R . This
covers all constructor-based narrowing sequences, i.e., R’s
runtime complexity is constant.

In contrast, if we change the second rule to h(g(x)) →
g(h(x)), then the runtime complexity becomes linear and
constructor-based narrowing becomes non-terminating:

h(x)
{x/g(x′)}

R g(h(x′)) {x′/g(x′′)}
R g(g(h(x′′))) R · · · .

Unfortunately, the reasoning in Example 6 is hard to
automate, since it explicitly considers all sequences that
start with any of the infinitely many basic terms. For au-
tomation, we show that constructor-based narrowing se-
quences can be “generalized” such that one only has to
regard finitely many start terms. Then a semi-decision pro-
cedure for termination of constructor-based narrowing is
obtained by enumerating only those sequences that begin
with these start terms.

We first define a partial ordering � that clarifies which
narrowing sequences are more general than others, and
prove the equivalence between constant runtime and ter-
mination of constructor-based narrowing afterwards.

Definition 7 (Ordering narrowing sequences). Let R be a TRS
and let s0

σ1
π1 R s1

σ2
π2 R · · · σn

πn R sn and t0
θ1
π1 R t1

θ2
π2 R

Download English Version:

https://daneshyari.com/en/article/6874110

Download Persian Version:

https://daneshyari.com/article/6874110

Daneshyari.com

https://daneshyari.com/en/article/6874110
https://daneshyari.com/article/6874110
https://daneshyari.com

