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Polynomial multiplication and its variants are a key ingredient in effective computer 
algebra. While verifying a polynomial product is a well known task, it was not yet clear 
how to do a similar approach for its middle product variant. In this short note, we present 
a new algorithm that provides such a verification with the same complexity and probability 
that for the classical polynomial multiplication. Furthermore, we extend our algorithm to 
verify any operations that compute only a certain chunk of the product, which is the case 
for instance of the well known short product operation.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Polynomial multiplication is a fundamental tool in com-
puter algebra as it often plays a central role in most ef-
ficient algorithms. In some cases, one may not need to 
compute the whole result of the product and this can 
be taken into account to speed up the computation. For 
instance, when dealing with truncated power series one 
need to only compute the lowest part of the polynomial 
multiplication. The latter operation is also referenced as 
short product in [1]. Another situation occurs within poly-
nomial division or inversion where only the middle terms 
of a specific product are needed [2–4]. This specific opera-
tion is called the middle product in [2].

Let F , G ∈ K[X] be two polynomials defined over a 
field K such that deg F = s − 1, deg G = 2s − 2. The mid-
dle product of F G denoted by MPs(F , G) corresponds to 
the coefficients of degree s − 1 to 2s − 2 from the prod-
uct F G . Let F G = ∑3s−3

i=0 hi Xi then MPs(F , G) = hs−1 +
hs X + hs+1 X2 +· · ·+ h2s−2 X s−1. Let M(n) denote the com-
plexity function for the multiplication of two polynomi-
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als of K[X] of degree at most n. Computing MPs(F , G)

through a full product requires 2M(s) + O (s) operations 
in K. As shown in [2], dedicated algorithms can compute 
MPs(F , G) twice faster. One remarkable property of mid-
dle product is to be the transposed problem of polyno-
mial multiplication using the Tellegen principle [5]. This 
strong result tells us that every polynomial multiplica-
tion algorithm can be turned into an algorithm for mid-
dle product with the same asymptotic complexity, i.e. 
M(s) + O (s). Since the seminal work of Karatsuba [6], 
many fast polynomial multiplication algorithms have been 
designed in order to reach a quasi-linear time complex-
ity [7, Chapter 8]. As of today, the best result over finite 
fields is O (d log d 8log∗ d log p) operations1 for the prod-
uct of degree d polynomials [8]. A common feature of 
all these algorithms is to be much more complex than 
the naive product, meaning their implementation could 
be complicated and errors prone. Using Tellegen princi-
ple to derive a middle product algorithm introduces an-
other level of difficulty that might further complicate its 
implementations.

1 log∗ is the iterated logarithm function.
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A classic way to check computations is to use a poste-
riori verification. The idea is to provide an algorithm that 
can check the result with an asymptotically better com-
plexity than the operation itself. The simplicity of the algo-
rithm must ensure its implementation’s robustness. Such a 
verification is of great interest when one wants to check 
a computation from an untrusted cloud server. In order 
to check a polynomial product F G one can pick a ran-
dom point α and check that F (α)G(α) = (F G)(α). If not, 
it is clear that the product is wrong. If the results agree, 
it is well known through Zippel–Schwartz–Lipton–DeMillo 
lemma [9–11] that the product F G is correct with a proba-
bility greater than 1 − d

N where N corresponds to the num-
ber of sampling points for α and deg F G < d. Assuming 
N > d, one can decrease the probability to 1 − dk

Nk by pick-
ing k different points. One advantage of this verification 
is that polynomial evaluation has a linear time complexity 
and can be implemented easily through Horner’s rules.

To the best of our knowledge, the verification of the 
middle product has not been investigated yet and we pro-
vide a similar linear time algorithm for it. One motivation 
of this work came from our experiment to compute the 
kernel of a large sparse matrix arising in discrete loga-
rithm computation. In particular, one part of the compu-
tation was relying on polynomial middle product with ma-
trix coefficients [12]. Unfortunately, our code failed to pro-
duce correct results when polynomial degrees were above 
500 000. Since quadratic time verification was not feasi-
ble, we decided to develop a fast approach. Note that our 
algorithm might also be of interest for the recent Middle-
Product Learning With Error problem [13].

We start the next section by giving a matrix interpre-
tation to the verification of polynomial product. Using this 
interpretation, we will define in the following sections our 
probabilistic verification for the middle product. Finally, in 
the last section we show how our method easily extends 
to the short product and any other operations that com-
pute any partial chunk of a polynomial product.

2. Certifying polynomial multiplication

Let F , G ∈ K[X] where F = f0 + f1 X + · · · + fm−1 Xm−1

and G = g0 + g1 X + · · · + gn−1 Xn−1. Assuming F is fixed, 
the product H = F G = ∑m+n−2

i=0 hi Xi can be described 
through a linear application from Kn to Km+n . The ma-
trix for this application corresponds to a Toeplitz matrix 
built from the coefficients of F . Let us denote AF such a 
matrix, the product of F by G correspond to the following 
matrix-vector product:⎛
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where AF ∈K
(m+n−1)×n , vG ∈K

n and v H ∈ K
m+n−1.

A classic way to certify the product H = F G is to choose 
a random α from a finite subset S ⊂ K and to check 
H(α) = F (α)G(α). Of course, some values of α may lead 
to a positive answer while H �= F G . However, the num-
ber of such α is at most deg H as they correspond to the 
roots of the polynomial (H − F G) �= 0 over the field K. 
The probability of success is then greater than 1 − deg H

|S| , 
which corresponds exactly to the Zippel–Schwartz–Lipton–
DeMillo lemma [9–11] on univariate polynomials. This ap-
proach reduces the verification to three polynomial evalu-
ations and one product and thus has a linear time com-
plexity of O (deg F + deg G + deg H).

Using the matrix version for polynomial product de-
picted in Equation (1), this latter approach corresponds 
exactly to multiplying both parts of the equation on the 
left by the row vector �α = [1, α, α2, . . . , αm+n−2]. By def-
inition of v H , we clearly have �α · v H = H(α). Using the 
Toeplitz structure of the matrix AF we have �αAF =
F (α)[1, α, . . . , αn−1], which gives (�αAF ) · vG = F (α)G(α). 
The probability result can be retrieved with the specific 
Freivalds certificate for matrix multiplication given in [14].

3. Certifying middle product

In order to illustrate our strategy we start this section 
with an example. Let A, B be two polynomials of K[X] of 
degree respectively 3 and 6, with A = a0 + a1 X + a2 X2 +
a3 X3 and B = b0 +b1 X +b2 X2 +b3x3 +b4 X4 +b5 X5 +b6 X6. 
We want to compute CM = c3 + c4 X + c5 X2 + c6 X3 where 
C = AB = ∑9

i=0 ci Xi . Using Equation (1) one can easily re-
mark that the middle product operation corresponds to 
using only certain rows of the linear application for the full 
multiplication by A. Equation (2) illustrates this remark on 
our example. The grey area highlights the rows used by the 
middle product operation. One may note that this is an im-
portant observation in Tellegen transposition principle for 
the middle product [5].⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0
a1 a0
a2 a1 a0
a3 a2 a1 a0

a3 a2 a1 a0
a3 a2 a1 a0

a3 a2 a1 a0
a3 a2 a1

a3 a2
a3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

b0
b1
b2
b3
b4
b5
b6

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
v B

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0
c1
c2
c3
c4
c5
c6
c7
c8
c9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2)

In order to certify the coefficients of the middle prod-
uct MP4(A, B) = c3 + c4 X + c5 X2 + c6 X3, one can multiply 
the grey part of equation (2) with the vector [1, α, α2, α3]
with α ∈ K. In particular, this corresponds to certifying 
that [1, α, α2, α3] · [c3, c4, c5, c6]T = cM(α) is equal to

γ =
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More generally, let F , G, H ∈ K[X] such that deg F =
deg H = s − 1, deg G = 2s − 2 and H = MPs(F , G). As for 
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