
Information Processing Letters 139 (2018) 39–43

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

2-Approximation algorithm for a generalization of scheduling

on unrelated parallel machines

Yossi Azar a, Jaya Prakash Champati b,∗, Ben Liang b

a Blavatnik School of Computer Science, Tel-Aviv University, Israel
b Department of Electrical and Computer Engineering, University of Toronto, Canada

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 March 2017
Received in revised form 23 February 2018
Accepted 9 July 2018
Available online xxxx
Communicated by Prudence Wong

Keywords:
Unrelated machines
Makespan
Approximation algorithms
Scheduling
Open cycles

In their seminal work [8], Lenstra, Shmoys, and Tardos proposed a 2-approximation
algorithm to solve the problem of scheduling jobs on unrelated parallel machines with
the objective of minimizing makespan. In contrast to their model, where a job is processed
to completion by scheduling it on any one machine, we consider the scenario where each
job j requires processing on k j different machines, independently. For this generalization,
we propose a 2-approximation algorithm based on the ρ-relaxed decision procedure [8]
and open cycles used in [3,2].

© 2018 Published by Elsevier B.V.

1. Introduction

We consider a system of m parallel machines. At time
zero, n independent and non-preemptible jobs are given.
Let M = {1, 2, . . . , m} and J = {1, 2, . . . , n} denote the set
of machine indices and job indices, respectively. Each job j
requires processing on k j ≤ m different machines and the
processing of the job can be performed independently on
different machines. The processing time required by a job j
on machine i ∈ M is pij . For each job j and machine i ∈ M ,
let xij denote a binary variable such that xij = 1 if job j
is assigned to machine i, and xij = 0 otherwise. A sched-
ule is then determined by the set {xij : xij ∈ {0, 1}, ∀i ∈ M,

∀ j ∈ J }. The schedule is feasible if and only if
∑

i∈M xij =
k j for all j ∈ J .

Given a schedule, the completion time on a machine i
is determined by the sum of processing times of jobs as-
signed to it. The makespan of the jobs, denoted by Cmax,

* Corresponding author.
E-mail address: jayaprakash.nitw@gmail.com (J.P. Champati).

is the maximum completion time over all machines. Given
{k j} and {pij} for all j and i, our objective is to find a fea-
sible schedule that minimizes the makespan. We formulate
the problem P as an ILP below:

minimize Cmax

subject to
∑

i∈M

xij = k j, ∀ j ∈ J (1)

∑

j∈ J

xi j pi j ≤ Cmax, ∀i ∈ M (2)

xij ∈ {0,1}, ∀i ∈ M,∀ j ∈ J . (3)

We note that the above formulation is general and can be
used for the case where jobs have placement constraints,
i.e., a job j can only be processed on a subset of machines.
In this case, we assign pij = ∞, for every machine i on
which the job j cannot be processed.

Our motivation for studying P is the following model
for data retrieval in a coded memory storage system [10,7].
A data file j is divided into k j blocks that are encoded into
N j ≥ k j code blocks. Each of the N j code blocks are stored

https://doi.org/10.1016/j.ipl.2018.07.005
0020-0190/© 2018 Published by Elsevier B.V.

https://doi.org/10.1016/j.ipl.2018.07.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:jayaprakash.nitw@gmail.com
https://doi.org/10.1016/j.ipl.2018.07.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2018.07.005&domain=pdf

40 Y. Azar et al. / Information Processing Letters 139 (2018) 39–43

on N j different storage units. A read request for the data
file j can be served by retrieving any k j code blocks. Given
m storage units and n data file read requests, the problem
of minimizing the total time to retrieve the files from the
storage system can be formulated using P .

For the special case where k j = 1 for all j ∈ J , P is
equivalent to the classical problem of minimizing make-
span on unrelated parallel machines, denoted by R||Cmax
[5,6,4,9,8]. Horowitz and Shani [6] provided a fully polyno-
mial time approximation algorithm for any fixed number
of unrelated machines. A list scheduling algorithm hav-
ing 2

√
m approximation ratio was proposed by Davis and

Jaffe [4]. Later, Potts [9] proposed a 2-approximation algo-
rithm by solving a relaxed linear program and doing enu-
meration for the non-integral part of the solution. How-
ever, due to the enumeration step, Potts’ algorithm has
O (mm−1) time complexity.

Lenstra, Shmoys, and Tardos (LST) [8] extended the so-
lution approach of Potts by providing a polynomial time
algorithm for rounding the fractional solution of the lin-
ear program. The LST algorithm is based on finding a
ρ-relaxed decision procedure as follows. Given P , an in-
stance of R||Cmax, and a deadline T , the ρ-relaxed deci-
sion procedure outputs ‘no’ if there is no schedule with
makespan at most T for an integer relaxation of P , else it
outputs a schedule with makespan at most ρT for P . The
LST algorithm finds a 2-relaxed decision procedure and
uses a simple binary search to obtain a 2-approximation
solution to R||Cmax.

We note that the LST algorithm cannot be directly ex-
tended to solve P . To see this, consider the underlying fea-
sibility problem for finding a ρ-relaxed decision procedure
for P , for a given deadline T . It consists of the constraints
in (1), constraints in (2) with Cmax replaced by T , and the
relaxed constraints 0 ≤ xij ≤ 1, for all i and for all j. Let r
be the number of variables in this feasibility problem, then
the number of constraints are 2r +m +n. This is in contrast
to the number of constraints r + m + n present in the cor-
responding feasibility problem for the classical unrelated
parallel machines problem [8]. Therefore, the counting ar-
gument used in [8] to claim that only m jobs will have
non-integral xij values is not applicable to the feasibility
problem at hand.

In this work, we present a 2-approximation solution
to P . Our solution approach closely follows [8] with an ex-
ception that we use open cycles in a bipartite graph [3,2]
to round the solution of the feasibility problem for P . For
ease of exposition, in Section 2 we first present our solu-
tion to a special case of P , where the processing time of
any job is the same on any eligible machine, i.e., the case
of identical machines with assignment restrictions. This is
then extended in Section 3 to the case of related machines
with assignment restrictions. Finally, in Section 4 we detail
the additional steps required for solving P .

2. Identical machines with assignment restrictions

Let PI denote the special case of P , where the process-
ing time of a job j on any machine is either p j or ∞. Let
M j denote the set of eligible machines of job j on which
its processing time is p j . Similarly, let J i denote the set

of jobs which have finite processing time on machine i. In
the following we present a 2-relaxed decision procedure
for PI .

2.1. 2-relaxed decision procedure

The 2-relaxed decision procedure for PI is based on the
following feasibility problem.
∑

i∈M j

xi j = k j, ∀ j ∈ J

∑

j∈ J i

xi j p j ≤ T , ∀i ∈ M

0 ≤ xij ≤ 1, ∀i ∈ M,∀ j ∈ J

xi j = 0, ∀i /∈ M j,∀ j ∈ J ,

(4)

for some T ≥ max j p j . If (4) is not feasible, then there is
no schedule for PI with makespan at most T . If (4) is
feasible, then we round the fractional solution using open
cycles followed by a simple matching in a forest graph. We
show that the resulting schedule has makespan at most 2T
for PI , thus establishing a 2-relaxed decision procedure for
PI . In the following we solve (4) by reducing it to a maxi-
mum flow problem.

2.1.1. Maximum flow problem
Consider the bipartite graph G = { J ∪ M, E}, where E =

{(j, i) : j ∈ J , i ∈ M j}. Using G we construct a flow network
N as follows:

• Introduce a source and add directed edges from the
source to all vertices in J . Assign capacity k j p j to the
edge from the source to vertex j.

• If (j, i) ∈ E , then direct the edge from j to i and assign
capacity p j to the edge.

• Introduce a sink and add directed edges from all ver-
tices in M to the sink. Assign capacity T to all these
edges.

It is easy to establish that solving the maximum flow prob-
lem in N results in a feasible solution for (4). This is stated
in the following proposition.

Proposition 1. For any given T , (4) is feasible if and only if there
exists a maximum flow f with value

∑n
j=1 k j p j in N . Further,

if such flow f exists, then the schedule {x̄i j = f (j, i)/p j , for all
(j, i) ∈ E} is a solution for (4).

Assuming n ≥ m, the maximum flow problem in N can
be solved efficiently by a bipartite preflow-push algorithm
with run time O (m3n) [1]. Next, we assume that for a
given T a maximum flow f with value

∑n
j=1 k j p j exists

in N . We round the non-integral part of {x̄i j} using open
cycles and matching in a forest graph.

2.1.2. Open cycles
We construct an undirected bipartite graph Ḡ = { J̄ ∪

M̄, Ē}, such that J̄ ⊆ J , M̄ ⊆ M , and (j, i) is in Ē if and
only if 0 < f (j, i) < p j for all j ∈ J and i ∈ M . A job vertex

Download English Version:

https://daneshyari.com/en/article/6874114

Download Persian Version:

https://daneshyari.com/article/6874114

Daneshyari.com

https://daneshyari.com/en/article/6874114
https://daneshyari.com/article/6874114
https://daneshyari.com

