Information Processing Letters 139 (2018) 39-43

www.elsevier.com/locate/ipl

Contents lists available at ScienceDirect

Information Processing Letters

2-Approximation algorithm for a generalization of scheduling

on unrelated parallel machines

Check for
updates

Yossi Azar?, Jaya Prakash Champati”*, Ben Liang”

4 Blavatnik School of Computer Science, Tel-Aviv University, Israel

b Department of Electrical and Computer Engineering, University of Toronto, Canada

ARTICLE INFO

ABSTRACT

Article history:

Received 23 March 2017

Received in revised form 23 February 2018
Accepted 9 July 2018

Available online xxxx

Communicated by Prudence Wong

In their seminal work [8], Lenstra, Shmoys, and Tardos proposed a 2-approximation
algorithm to solve the problem of scheduling jobs on unrelated parallel machines with
the objective of minimizing makespan. In contrast to their model, where a job is processed
to completion by scheduling it on any one machine, we consider the scenario where each
job j requires processing on k; different machines, independently. For this generalization,

we propose a 2-approximation algorithm based on the p-relaxed decision procedure [8]

Keywords:

Unrelated machines
Makespan

Approximation algorithms
Scheduling

Open cycles

and open cycles used in [3,2].

© 2018 Published by Elsevier B.V.

1. Introduction

We consider a system of m parallel machines. At time
zero, n independent and non-preemptible jobs are given.
Let M=1{1,2,...,m} and J ={1,2,...,n} denote the set
of machine indices and job indices, respectively. Each job j
requires processing on kj <m different machines and the
processing of the job can be performed independently on
different machines. The processing time required by a job j
on machine i € M is pjj. For each job j and machine i € M,
let x;; denote a binary variable such that x;; =1 if job j
is assigned to machine i, and x;; = 0 otherwise. A sched-
ule is then determined by the set {x;; : x;; € {0,1},Vie M,
Vj € J}. The schedule is feasible if and only if) ;. xij =
k; for all je J.

Given a schedule, the completion time on a machine i
is determined by the sum of processing times of jobs as-
signed to it. The makespan of the jobs, denoted by Cpax,

* Corresponding author.
E-mail address: jayaprakash.nitw@gmail.com (J.P. Champati).

https://doi.org/10.1016/.ipl.2018.07.005
0020-0190/© 2018 Published by Elsevier B.V.

is the maximum completion time over all machines. Given
{k;} and {p;;} for all j and i, our objective is to find a fea-
sible schedule that minimizes the makespan. We formulate
the problem P as an ILP below:

minimize Cmax

subject to le‘j:kj, Vje] (1)
ieM
> Xijpij < Cmax. VieM (2)
jel
xjj€{0,1}, VieM,Vje]. 3)

We note that the above formulation is general and can be
used for the case where jobs have placement constraints,
i.e., a job j can only be processed on a subset of machines.
In this case, we assign pjj = oo, for every machine i on
which the job j cannot be processed.

Our motivation for studying P is the following model
for data retrieval in a coded memory storage system [10,7].
A data file j is divided into k; blocks that are encoded into
N;j > k; code blocks. Each of the N code blocks are stored

https://doi.org/10.1016/j.ipl.2018.07.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:jayaprakash.nitw@gmail.com
https://doi.org/10.1016/j.ipl.2018.07.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2018.07.005&domain=pdf

40 Y. Azar et al. / Information Processing Letters 139 (2018) 39-43

on Nj different storage units. A read request for the data
file j can be served by retrieving any k; code blocks. Given
m storage units and n data file read requests, the problem
of minimizing the total time to retrieve the files from the
storage system can be formulated using P.

For the special case where kj =1 for all je J, P is
equivalent to the classical problem of minimizing make-
span on unrelated parallel machines, denoted by R||Cmax
[5,6,4,9,8]. Horowitz and Shani [6] provided a fully polyno-
mial time approximation algorithm for any fixed number
of unrelated machines. A list scheduling algorithm hav-
ing 2./m approximation ratio was proposed by Davis and
Jaffe [4]. Later, Potts [9] proposed a 2-approximation algo-
rithm by solving a relaxed linear program and doing enu-
meration for the non-integral part of the solution. How-
ever, due to the enumeration step, Potts’ algorithm has
0(m™ 1) time complexity.

Lenstra, Shmoys, and Tardos (LST) [8] extended the so-
lution approach of Potts by providing a polynomial time
algorithm for rounding the fractional solution of the lin-
ear program. The LST algorithm is based on finding a
p-relaxed decision procedure as follows. Given P, an in-
stance of R||Cmax, and a deadline T, the p-relaxed deci-
sion procedure outputs ‘no’ if there is no schedule with
makespan at most T for an integer relaxation of P, else it
outputs a schedule with makespan at most pT for P. The
LST algorithm finds a 2-relaxed decision procedure and
uses a simple binary search to obtain a 2-approximation
solution to R||Cpax.

We note that the LST algorithm cannot be directly ex-
tended to solve P. To see this, consider the underlying fea-
sibility problem for finding a p-relaxed decision procedure
for P, for a given deadline T. It consists of the constraints
in (1), constraints in (2) with Cpax replaced by T, and the
relaxed constraints 0 < x;; <1, for all i and for all j. Let r
be the number of variables in this feasibility problem, then
the number of constraints are 2r +m+n. This is in contrast
to the number of constraints r +m + n present in the cor-
responding feasibility problem for the classical unrelated
parallel machines problem [8]. Therefore, the counting ar-
gument used in [8] to claim that only m jobs will have
non-integral x;; values is not applicable to the feasibility
problem at hand.

In this work, we present a 2-approximation solution
to P. Our solution approach closely follows [8] with an ex-
ception that we use open cycles in a bipartite graph [3,2]
to round the solution of the feasibility problem for P. For
ease of exposition, in Section 2 we first present our solu-
tion to a special case of P, where the processing time of
any job is the same on any eligible machine, i.e., the case
of identical machines with assignment restrictions. This is
then extended in Section 3 to the case of related machines
with assignment restrictions. Finally, in Section 4 we detail
the additional steps required for solving P.

2. Identical machines with assignment restrictions

Let P; denote the special case of P, where the process-
ing time of a job j on any machine is either p; or oo. Let
M; denote the set of eligible machines of job j on which
its processing time is p;. Similarly, let J; denote the set

of jobs which have finite processing time on machine i. In
the following we present a 2-relaxed decision procedure
for P;.

2.1. 2-relaxed decision procedure

The 2-relaxed decision procedure for P is based on the
following feasibility problem.

inj:kj, Vjie]
iEMj

injpjfT, VieM
Jjeli

OSX,']'S], ViEM,VjE_]
xjj=0, Vi¢Mj Vje],

(4)

for some T > max;p;. If (4) is not feasible, then there is
no schedule for P; with makespan at most T. If (4) is
feasible, then we round the fractional solution using open
cycles followed by a simple matching in a forest graph. We
show that the resulting schedule has makespan at most 2T
for Py, thus establishing a 2-relaxed decision procedure for
Pi. In the following we solve (4) by reducing it to a maxi-
mum flow problem.

2.1.1. Maximum flow problem

Consider the bipartite graph G ={J UM, E}, where E =
{(j.D):je J,ieMj}. Using G we construct a flow network
N as follows:

e Introduce a source and add directed edges from the
source to all vertices in J. Assign capacity kjp; to the
edge from the source to vertex j.

e If (j,i) € E, then direct the edge from j to i and assign
capacity p; to the edge.

e Introduce a sink and add directed edges from all ver-
tices in M to the sink. Assign capacity T to all these
edges.

It is easy to establish that solving the maximum flow prob-
lem in A results in a feasible solution for (4). This is stated
in the following proposition.

Proposition 1. For any given T, (4) is feasible if and only if there
exists a maximum flow f with value Y7_, kjp; in N. Further,
if such flow f exists, then the schedule {x;j = f(j,1)/pj, for all
(j,1) € E} is a solution for (4).

Assuming n > m, the maximum flow problem in A/ can
be solved efficiently by a bipartite preflow-push algorithm
with run time O(m3n) [1]. Next, we assume that for a
given T a maximum flow f with value Z'}:] kipj exists
in V. We round the non-integral part of {X;;} using open
cycles and matching in a forest graph.

2.1.2. Open cycles B B
We construct an undirected bipartite graph G = {J U

M, E}, such that J € J, M C M, and (j,i) is in E if and
only if 0 < f(j,i) < pjforall je J and i€ M. A job vertex

Download English Version:

https://daneshyari.com/en/article/6874114

Download Persian Version:

https://daneshyari.com/article/6874114

Daneshyari.com

https://daneshyari.com/en/article/6874114
https://daneshyari.com/article/6874114
https://daneshyari.com

