
Information Processing Letters 139 (2018) 49–52

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

A fast algorithm for all-pairs Hamming distances

Abdullah N. Arslan

Department of Computer Science and Information Systems, Texas A & M University – Commerce, Commerce, TX 75428, USA

a r t i c l e i n f o

Article history:
Received 13 December 2017
Received in revised form 7 July 2018
Accepted 11 July 2018
Available online xxxx
Communicated by Kun-Mao Chao

Keywords:
Hamming distance
Algorithms
Clustering
Distance matrix
Matrix multiplication

1. Introduction

Computing a distance matrix is a major step in hierarchi-
cal clustering [11] and in creating a phylogenetic tree [2].
A distance matrix requires computing distances for all pairs
of elements. Pairwise distances are also used in calculating
cluster distances [13]. In many bioinformatics applications,
the elements are biological sequences (amino-acid or nu-
cleotide sequences). The Unweighted Pair Group Method with
Arithmetic Mean (UPGMA) [11] builds a hierarchical tree
bottom up based on pairwise distances between clusters
which in turn are calculated by using pairwise distances
for sequences in these clusters [4,6]. The Hamming distance
is among the distances used for this purpose. The Ham-
ming distance between two strings of equal length is the
number of positions at which these strings differ.

Several recent applications use distance matrices based-
on Hamming distances [5,8,13].

Hierarchical clustering with Hamming distance yields
clonal grouping of immune cells in human. This is used in
understanding the micro-evolutionary dynamics that drive

E-mail address: Abdullah.Arslan@tamuc.edu.

successful immune responses and the dysregulation that
occurs with aging or disease [5]. Single nucleotide poly-
morphisms (SNPs) are the most common type of genetic
variation among people. A two-stage method for disease
association was proposed in [13]. The first stage constructs
SNP-sets by a clustering algorithm which employs Ham-
ming distance to measure the similarity between strings of
SNP genotypes and evaluates whether the given SNPs or
SNP-sets should be clustered. With the resulting SNP-sets,
the second stage develops an association test to examine
susceptibility to the disease of interest. BugMat [8] is a
program which generates a distance matrix based on Ham-
ming distance for bacterial genomes. It is deployed as part
of the Public Health England solution for M.tuberculosis
genomic processing and detecting possible disease trans-
mission. Mycobacterium tuberculosis has a genome size of
about 4.4 × 106 bases. Computing Hamming distances for
many pairs of long sequences is a time-consuming step.
For example, this step takes about 26.5 minutes (includ-
ing clustering) for 940 SNPs from 4864 subjects [13], and
3 hours for 4000 sequences [8]. In this paper we propose
an algorithm for this step. The main step of our algorithm
is based on matrix multiplication.

https://doi.org/10.1016/j.ipl.2018.07.006
0020-0190/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.ipl.2018.07.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:Abdullah.Arslan@tamuc.edu
https://doi.org/10.1016/j.ipl.2018.07.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2018.07.006&domain=pdf

50 A.N. Arslan / Information Processing Letters 139 (2018) 49–52

Definition 1. For two given sets S1 and S2, AllPairsHam-
Dist is the problem of computing Hamming distances for
all pairs (e1, e2) of strings, where e1 ∈ S1, e2 ∈ S2.

We show that Problem AllPairsHamDist can be solved
by performing a series of matrix multiplications. In these
multiplications, the matrix elements are from a finite al-
phabet. We translate each of these multiplications to a
multiplication of (0, 1)-matrices in which each matrix-
element is either a zero or a one. The pairwise distance
matrix is calculated as the following: First, for every el-
ement of the alphabet, one matrix multiplication is per-
formed. All such resulting product matrices are added and
a summation matrix is obtained. Second, the matrix that
contains Hamming distances for all pairs is calculated by
subtracting this summation matrix from a constant matrix.

We also consider a special case of Problem AllPairsHam-
Dist in which the input sets S1 and S2 are equal. That is,
in this case, pairwise Hamming distances are calculated for
all pairs within the same set. Our algorithm applies to this
case without any change except that the matrix multipli-
cations are of the form A AT for matrices A obtained from
S1 = S2.

The outline of this paper is the following: We describe
our notation in Section 2. We present a method for a spe-
cial case of matrix multiplication in Section 3. We present
our algorithm for all pairs Hamming distance computations
in Section 4. We conclude in Section 5.

2. Notation

Let � be a fixed finite alphabet for matrix elements. Let
A = (Ai, j)n×r denote a matrix of size n × r whose elements
are Ai, j in �. For a given A and e, let Ae denote the matrix
in which each element e in A is replaced by a one, and all
other elements are replaced by zeros. That is,

Ae[i, j] =
{

1, if A[i, j] = e;
0, otherwise.

Let AT denote the transpose of matrix A. For matrices A,
B , let A[i, ∗] denote the ith row of A, and B[∗, j] denote
the jth column of B . Define a (0, 1)-matrix as a matrix in
which each element is a zero or a one.

Let X(m) denote the complexity of matrix multiplica-
tion for square matrices of size m × m. Let X(w, r, c) de-
note the time complexity of multiplying two matrices of
sizes w × r and r × c.

3. Computing A AT based on square matrix
multiplication

Let A be an n ×r matrix. We decompose matrices A and
B = AT into square matrices. As a result, the multiplication
A AT is expressed using multiplications of square matrices.

The naive matrix multiplication algorithm takes �(n3)

time to multiply two n × n matrices. Strassen’s O (n2.81)-
time algorithm [12] for this problem was the first sub-
cubic time algorithm. Following this achievement, even
faster algorithms for matrix multiplication have been
proposed in the literature. Let k∗ denote the power k

of m in fastest O (mk)-time multiplication algorithm for
(0, 1)-matrices of size m ×m. Currently, the fastest such al-
gorithm generalizes the Coppersmith—Winograd algorithm
[3], and it has k∗ ≤ 2.3728639 [7]. Naturally, k∗ ≥ 2 be-
cause any matrix multiplication algorithm takes �(m2)

time for multiplying two m × m matrices. A less-obvious
lower bound is that the size of any arithmetic circuit for
generating the product of two matrices under certain con-
ditions is �(n2 log n) [10].

In decomposing matrices A = (Aij)n×r and B = AT into
square matrices, there are three cases.

When n = r, no decomposition is necessary. The multi-
plication A AT is a square matrix multiplication which can
be done in O (nk∗

) time by fast matrix multiplication algo-
rithms (e.g. [7]).

When n > r, the matrices and the multiplication can be
decomposed in the following way: If n is not a multiple
of r, then let x be the smallest number that needs to be
added to make n a multiple of r. Note that x ≤ r − 1. We
add x rows of zeros to A, and x columns of zeros to B .
We note that this does not change the product matrix. We
then decompose A and B into submatrices (blocks) of size
r × r as can be seen in the writing of matrices in Eq. (1).
⎛
⎜⎜⎝

(
C ′

1,1

)
r×r

. . .
(

C ′
1,r

)
r×r

.(
C ′

n,1

)
r×r

. . .
(
C ′

n,r

)
r×r

⎞
⎟⎟⎠

n
r × n

r

=

⎛
⎝ (A′

1)r×r

. . .

(A′
n
r
)r×r

⎞
⎠

n
r ×1

(
(B ′

1)r×r . . . (B ′
n
r
)r×r

)
1× n

r

, (1)

where (A′
i) is the i’th block of size r × r from the top in A,

and (B ′
i) is the i’th block of size r × r from the left in B . In

terms of such r × r blocks, A is of size n
r × 1, and B is of

size 1 × n
r . Similarly, C is composed of blocks C ′

i, j of size
r × r. For all i, j ∈ [1, nr], C ′

i, j = A′
i B ′

j . The time complex-

ity of computing C in this case is O (n
r X(r)) = O (n

r rk∗
) =

O (nrk∗−1).
When n < r, the matrices and the multiplication can be

decomposed in the following way: If r is not a multiple
of n, then let x be the smallest number that needs to be
added to make r a multiple of n. Note that x ≤ n − 1. We
add x columns of zeros to A, and x rows of zeros to B .
We note that this does not change the product matrix. We
then decompose A and B into submatrices of size n × n as
seen in the writing of matrices in Eq. (2).

C =
((

A′′
1

)
n×n . . .

(
A′′

r
n

)
n×n

)
1× r

n

⎛
⎜⎜⎜⎝

(
B ′′

1

)
n×n(

B ′′
2

)
n×n

. . .(
B ′′

r
n

)
n×n

⎞
⎟⎟⎟⎠

r
n ×1

, (2)

where (A′′
i) is the i’th block of size n × n from the left in

A, and (B ′′
i) is the i’th block of size n × n from the top in

B . In terms of such n × n blocks, A is of size 1 × n
r , and B

is of size n
r × 1. C = ∑r/n

�=1 A′′
� B ′′

� . This requires r/n matrix

Download English Version:

https://daneshyari.com/en/article/6874116

Download Persian Version:

https://daneshyari.com/article/6874116

Daneshyari.com

https://daneshyari.com/en/article/6874116
https://daneshyari.com/article/6874116
https://daneshyari.com

