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We show that the weak Roman domination number of a connected n-vertex graph is
at most 5 and characterize the graphs achieving equality. In addition, we provide a
constructive characterization of the trees for which the weak Roman domination number
equals the Roman domination number and reveal several structural properties of these
trees. This answers a problem posed in M. Chellali et al. (2014) [4].
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1. Introduction

All graphs considered in this paper are finite, simple
and undirected. Let V(G) and E(G) be the vertex set and
edge set of a graph G, respectively. For a vertex v € V(G),
we use dg(v) to denote the degree of v in G and let
N¢g(v) denote the neighborhood of v. The diameter of G
is the maximum distance between vertices of G, denoted
by diam(G). An isolated vertex is a vertex with degree zero.
A vertex of degree one is called a leaf, and its neighbor
is called a support vertex. A vertex with at least two leaf
neighbors is called a strong support vertex. We denote the
star with one central vertex and k leaves by Sy and the
double star with exactly two adjacent central support ver-
tices having p and g leaf neighbors by S, 4. For two in-
tegers i, j such that i < j, we use [i, j] to denote the set
{i,i+1,i4+2,...,j}

For a graph G, let f be a function from V(G) to
{0,1,2}. Denote by V;,i =0,1,2 the set of vertices as-
signed the label i under f. Thus, f can be viewed as a ver-
tex partition of G such that V(G) = {Vy, V1, V2}, and we
can equivalently write f = (Vg, V1, V3). We call f an Ro-
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man dominating function (RDF) of G if every vertex u € Vg
is adjacent to at least one vertex v € V. A vertex u € Vg is
said to be undefended with respect to f if it is not adjacent
to a vertex v € V1 U V,. We call f a weak Roman dominat-
ing function (WRDF) of G if each vertex u € Vy is adjacent
to a vertex v € V1 U V3, such that the function f’ defined
by ff(u)=1, f'(v)=f(v) —1, and f'(w)= f(w) for all
w € V(G) \ {u, v} has no undefended vertex. The weight of
an RDF (resp. a WRDF) f of G, denoted by w(f), is the
value ZveV(G) f(v). The Roman domination number yg(G)
(resp. Weak Roman domination number y,(G)) is the min-
imum weight of an RDF (resp. a WRDF) of G. Obviously,
¥r(G) < Yr(G). An RDF or a WRDF of G with weight w is
called a w-RDF or w-WRDF of G. For a subgraph G’ of G,
we use f|g to denote the restriction of f to G’.

For a vertex v of a graph G, the open neighborhood of
v is Ng(v) = {u € V(G)|uv € E(G)} and the closed neigh-
borhood of v is Ng[v] = N¢(v) U {v}. For a set S € V(G),
the open neighborhood of S is N¢(S) =UyecsNg(v) and the
closed neighborhood of S is Ng[S]= N¢g(S)US. A vertex u
is called a private neighbor of v with respect to S or simply
an S-pn of v if Ng[u] NS = {v}. Note that when v ¢ S,
v has no S-pn. The set pn(v, S) = Ng[v] — Ng[S \ {v}] of
all S-pns of v is called the private neighbor set of v with re-
spect to S. The external private neighbor set of v, denoted by
epn(v, S), is defined as epn(v, S) = pn(v, S) — {v}. Hence,


https://doi.org/10.1016/j.ipl.2018.05.009
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:zhuenqiang@pku.edu.cn
https://doi.org/10.1016/j.ipl.2018.05.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2018.05.009&domain=pdf

E. Zhu, Z. Shao / Information Processing Letters 138 (2018) 12-18 13

the set epn(v, S) consists of all S-pns of v that belong to
VvV —S.

For ease of presentation, we sometimes consider rooted
trees. For a vertex v in a (rooted) tree T, we let C7(v) and
Dr(v) denote the sets of children and descendants of v,
respectively. The maximal subtree at v is the subtree of T
induced by D7 (v) U {v} and denoted by T,.

Roman domination was first studied by Cockayne et al.
[5] and has attracted the attention of many scholars; see
[3,7,6,9]. Weak Roman domination is a less restrictive ver-
sion of Roman domination, which was introduced by Hen-
ning and Hedetniemi [8]. Regarding the weak Roman dom-
ination number, Arumugam [2] and Chellali [4] proposed
two problems to ask for a characterization of n-vertex
trees T such that y.(T) = 27" and yr(T) = yr(T), respec-
tively. Recently, José [1] provided a constructive charac-
terization of the trees for which the Roman domination
number strongly equals the weak Roman domination num-
ber. In this paper, we first show that y:(G) < 2?” for a
connected n-vertex graph G and characterize the graphs
achieving equality, which answers Problem 3.6 proposed
by Arumugam et al. [2]. Then, we provide a necessary and
sufficient condition to characterize the trees T satisfying
Yr(T) = y+(T) and therefore answer Problem 15 posed by
Chellali et al. [4].

2. Weak Roman domination number of connected
graphs

This section is devoted to showing that the weak Ro-
man domination number of any n-vertex connected graph
is at most 2n/3 and characterizing the n-vertex graph G
satisfying y;(G) = 2n/3. Since adding an edge cannot in-
crease Y- (G), we sufficiently prove the bound for trees.

Theorem 2.1. If T is an n-vertex tree, n > 2, then y(T) < ZT”

Proof. We proceed by induction on n. If n =2 or 3, then
T is a path on two vertices or three vertices, and y;(T) =
1or2 Letn>4.If T is a star, then y(T) =2 < Zn. If
diamT = 3, then T is a double star Sj 4. In this case, when
p>2andq>2, (T)=4.When p=1and q > 2, y(T) =
3. When p=1and q =1, y-(T) = 2. Therefore, y(T) < %n.

In the following, we assume that diamT > 4 and every
n’-vertex tree T’ with n > n’(> 2) has a WRDF f’ with
weight at most ZT”/ Let P =upu1...un be a longest path
in T, where m = diam(T). Clearly, dr(u;) > 2 for any i €
[1,m — 1], and d7(up) =dr(up) = 1.

Case 1. dr(um—1) # 3. Let T’ be the subtree of T
by removing vertices u,—1 and its leaf neighbors. Since
diamT > 4, we have n’ > 3. Define

f'(v), veV(T),
2, v=um_1 and

. . dr (um-1) = 4,
Frvm > 1.2 v § o (=D
dr (Um—1) =2,

0, veNr(um-1).

Then, f is a WRDF of T, while w(f) =w(f)+2<2(n—
4) +2 < 2n (when dr(um—1) = 4) or w(f) =w(f)+1=<
%(n -2)+1< %n (when dr (up—1) =2).

Case 2. dr(um-1) = 3. Let Nr(um-2) \ {Um-1, Um-3} =
{w1,wy, ..., wy}. Since P is the longest path, every ver-
tex in Nt(wj) \ {um—2} is a leaf, and by Case 1, we may
assume w; has either zero or two leaf neighbors. With-
out loss of generality, let X1 ={w1,wy,...,wy} and X =
{Wgiq, Weryo, ..., Wy} be the sets of vertices with zero
and two leaf neighbors, respectively, where 0 < ¢’ < ¢.
Here, X1 =¥ when ¢/ =0.

Consider the graph by removing edge upm_>um—3 from
T; let T; be the component containing uy_3, and T, be
the component containing up,—>. We now define a function
f from V(T) to {0,1,2} by letting f(v) = f’(v) for any
v € T1, and when |X1] <1,

2, V=up_1 or ve Xy,
1, v=wy and |X1| =1,
0, ve V(T2 \ (X2 U{um—1, w1}),

and when |X1| > 2,

fwvy=

2, v e ({um-1,um—2} U X2),

0, ve V(T2 \ (X2 U{um—1, um-2}).

Evidently, f is a WRDF of T. When |X;1] <1, w(f) =
min{w(f")+2+1+2(£—1) (the case of |X1|=1), w(f")+
2 + 2¢ (the case of |X1| = 0)} =min{3(n —5) +3, 2(n—
4)+2} < 2n. When |X1| =2, w(f) = f(W)+2+2+2((—
) <3 -G+ + 1430 —6)]+2( — ) +4=
%n + % — %Zl. Hence, w(f) < %n. In particular, when
|X1] > 3, we have w(f) < %n. This also implies that if
w(f) = Zn, it must be the case that dr(um—1) =3 and
|X1|=2. O

fwv)y=

Let f be a yr(G)-RDF (or a yr(G)-WRDF) of a graph
G, such that the number of vertices labeled with 1 is the
minimum. We call such function f a special yg(G)-RDF (or
a special yr(G)-WRDF) of G and use .#g(G) (or % (G)) to
denote the set of all special yg(G)-RDFs (or yr(G)-WRDFs)
of G. One can readily check that under a special yg(G)-RDF
(or a y-(G)-WRDF), any strong support vertex is labeled
with 2. Otherwise, we can assign to the support vertex a
weight of 2 and its two leaf neighbors a weight of 0. Par-
ticularly, let g be a special yr(G)-RDF of G. Then, G does
not contain three vertices u, v, w, such that vu, vw € E(G)
and f(v) =0, f(uy= f(w)=1,0or vu € E(G) and f(v) =
2, fwy=1.

Theorem 2.2. Let T be a tree on n vertices,n > 3. Then, y(T) =
2n/3 if and only if every vertex of degree at least two in T has
exactly two leaf neighbors.

Proof. Let V' and V" be the set of leaves and vertices with
exactly two leaf neighbors in T, respectively. If V' =V \V’,
then n=3|V”|. Let f € .%.(T). Then, every vertex in V" is
labeled with 2, and every vertex in V' is labeled with 0
under f. Therefore, y:(T) = w(f) =2|V"| =2n/3.
Conversely, if y;(T) = 2n/3, then let g be a special
23—”—WRDF of T. Let P = uguq...uy be the longest path
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