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We show that the weak Roman domination number of a connected n-vertex graph is 
at most 2n

3 and characterize the graphs achieving equality. In addition, we provide a 
constructive characterization of the trees for which the weak Roman domination number 
equals the Roman domination number and reveal several structural properties of these 
trees. This answers a problem posed in M. Chellali et al. (2014) [4].

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are finite, simple 
and undirected. Let V (G) and E(G) be the vertex set and 
edge set of a graph G , respectively. For a vertex v ∈ V (G), 
we use dG(v) to denote the degree of v in G and let 
NG(v) denote the neighborhood of v . The diameter of G
is the maximum distance between vertices of G , denoted 
by diam(G). An isolated vertex is a vertex with degree zero. 
A vertex of degree one is called a leaf, and its neighbor 
is called a support vertex. A vertex with at least two leaf 
neighbors is called a strong support vertex. We denote the 
star with one central vertex and k leaves by Sk and the 
double star with exactly two adjacent central support ver-
tices having p and q leaf neighbors by S p,q . For two in-
tegers i, j such that i ≤ j, we use [i, j] to denote the set 
{i, i + 1, i + 2, . . . , j}.

For a graph G , let f be a function from V (G) to 
{0, 1, 2}. Denote by V i, i = 0, 1, 2 the set of vertices as-
signed the label i under f . Thus, f can be viewed as a ver-
tex partition of G such that V (G) = {V 0, V 1, V 2}, and we 
can equivalently write f = (V 0, V 1, V 2). We call f an Ro-
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man dominating function (RDF) of G if every vertex u ∈ V 0
is adjacent to at least one vertex v ∈ V 2. A vertex u ∈ V 0 is 
said to be undefended with respect to f if it is not adjacent 
to a vertex v ∈ V 1 ∪ V 2. We call f a weak Roman dominat-
ing function (WRDF) of G if each vertex u ∈ V 0 is adjacent 
to a vertex v ∈ V 1 ∪ V 2, such that the function f ′ defined 
by f ′(u) = 1, f ′(v) = f (v) − 1, and f ′(w) = f (w) for all 
w ∈ V (G) \ {u, v} has no undefended vertex. The weight of 
an RDF (resp. a WRDF) f of G , denoted by w( f ), is the 
value 

∑
v∈V (G) f (v). The Roman domination number γR(G)

(resp. Weak Roman domination number γr(G)) is the min-
imum weight of an RDF (resp. a WRDF) of G . Obviously, 
γr(G) ≤ γR(G). An RDF or a WRDF of G with weight ω is 
called a ω-RDF or ω-WRDF of G . For a subgraph G ′ of G , 
we use f |G ′ to denote the restriction of f to G ′ .

For a vertex v of a graph G , the open neighborhood of 
v is NG(v) = {u ∈ V (G)|uv ∈ E(G)} and the closed neigh-
borhood of v is NG [v] = NG(v) ∪ {v}. For a set S ∈ V (G), 
the open neighborhood of S is NG(S) = ∪v∈S NG(v) and the 
closed neighborhood of S is NG [S] = NG(S) ∪ S . A vertex u
is called a private neighbor of v with respect to S or simply 
an S-pn of v if NG [u] ∩ S = {v}. Note that when v /∈ S , 
v has no S-pn. The set pn(v, S) = NG [v] − NG [S \ {v}] of 
all S-pns of v is called the private neighbor set of v with re-
spect to S . The external private neighbor set of v , denoted by 
epn(v, S), is defined as epn(v, S) = pn(v, S) − {v}. Hence, 
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the set epn(v, S) consists of all S-pns of v that belong to 
V − S .

For ease of presentation, we sometimes consider rooted 
trees. For a vertex v in a (rooted) tree T , we let CT (v) and 
DT (v) denote the sets of children and descendants of v , 
respectively. The maximal subtree at v is the subtree of T
induced by DT (v) ∪ {v} and denoted by T v .

Roman domination was first studied by Cockayne et al. 
[5] and has attracted the attention of many scholars; see 
[3,7,6,9]. Weak Roman domination is a less restrictive ver-
sion of Roman domination, which was introduced by Hen-
ning and Hedetniemi [8]. Regarding the weak Roman dom-
ination number, Arumugam [2] and Chellali [4] proposed 
two problems to ask for a characterization of n-vertex 
trees T such that γr(T ) = 2n

3 and γr(T ) = γR(T ), respec-
tively. Recently, José [1] provided a constructive charac-
terization of the trees for which the Roman domination 
number strongly equals the weak Roman domination num-
ber. In this paper, we first show that γr(G) ≤ 2n

3 for a 
connected n-vertex graph G and characterize the graphs 
achieving equality, which answers Problem 3.6 proposed 
by Arumugam et al. [2]. Then, we provide a necessary and 
sufficient condition to characterize the trees T satisfying 
γR(T ) = γr(T ) and therefore answer Problem 15 posed by 
Chellali et al. [4].

2. Weak Roman domination number of connected 
graphs

This section is devoted to showing that the weak Ro-
man domination number of any n-vertex connected graph 
is at most 2n/3 and characterizing the n-vertex graph G
satisfying γr(G) = 2n/3. Since adding an edge cannot in-
crease γr(G), we sufficiently prove the bound for trees.

Theorem 2.1. If T is an n-vertex tree, n ≥ 2, then γr(T ) ≤ 2n
3 .

Proof. We proceed by induction on n. If n = 2 or 3, then 
T is a path on two vertices or three vertices, and γr(T ) =
1 or 2. Let n ≥ 4. If T is a star, then γr(T ) = 2 ≤ 2

3 n. If 
diamT = 3, then T is a double star S p,q . In this case, when 
p ≥ 2 and q ≥ 2, γr(T ) = 4. When p = 1 and q ≥ 2, γr(T ) =
3. When p = 1 and q = 1, γr(T ) = 2. Therefore, γr(T ) ≤ 2

3 n.
In the following, we assume that diamT ≥ 4 and every 

n′-vertex tree T ′ with n > n′(≥ 2) has a WRDF f ′ with 
weight at most 2n′

3 . Let P = u0u1 . . . um be a longest path 
in T , where m = diam(T). Clearly, dT (ui) ≥ 2 for any i ∈
[1, m − 1], and dT (u0) = dT (um) = 1.

Case 1. dT (um−1) 	= 3. Let T ′ be the subtree of T
by removing vertices um−1 and its leaf neighbors. Since 
diamT ≥ 4, we have n′ ≥ 3. Define

f : V (T ) → {0,1,2} : v �→

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f ′(v), v ∈ V (T ′),
2, v = um−1 and

dT (um−1) ≥ 4,

1, v = um−1 and
dT (um−1) = 2,

0, v ∈ NT (um−1).

Then, f is a WRDF of T , while w( f ) = w( f ′) + 2 ≤ 2
3 (n −

4) + 2 < 2
3 n (when dT (um−1) ≥ 4) or w( f ) = w( f ′) + 1 ≤

2
3 (n − 2) + 1 < 2

3 n (when dT (um−1) = 2).
Case 2. dT (um−1) = 3. Let NT (um−2) \ {um−1, um−3} =

{w1, w2, . . . , w�}. Since P is the longest path, every ver-
tex in NT (wi) \ {um−2} is a leaf, and by Case 1, we may 
assume wi has either zero or two leaf neighbors. With-
out loss of generality, let X1 = {w1, w2, . . . , w�′ } and X2 =
{w�′+1, w�′+2, . . . , w�} be the sets of vertices with zero 
and two leaf neighbors, respectively, where 0 ≤ �′ ≤ �. 
Here, X1 = ∅ when �′ = 0.

Consider the graph by removing edge um−2um−3 from 
T ; let T1 be the component containing um−3, and T2 be 
the component containing um−2. We now define a function 
f from V (T ) to {0, 1, 2} by letting f (v) = f ′(v) for any 
v ∈ T1, and when |X1| ≤ 1,

f (v) =
⎧⎨
⎩

2, v = um−1 or v ∈ X2,

1, v = w1 and |X1| = 1,

0, v ∈ V (T2) \ (X2 ∪ {um−1, w1}),
and when |X1| ≥ 2,

f (v) =
{

2, v ∈ ({um−1, um−2} ∪ X2),

0, v ∈ V (T2) \ (X2 ∪ {um−1, um−2}).
Evidently, f is a WRDF of T . When |X1| ≤ 1, w( f ) =
min{w( f ′) +2 +1 +2(� −1) (the case of |X1| = 1), w( f ′) +
2 + 2� (the case of |X1| = 0)} = min{ 2

3 (n − 5) + 3, 2
3 (n −

4) + 2} < 2
3 n. When |X1| ≥ 2, w( f ) = f (w ′) + 2 + 2 + 2(� −

�1) ≤ 2
3 [n − (3 + �1 + 1 + 3(� − �1))] + 2(� − �1) + 4 =

2
3 n + 4

3 − 2
3 �1. Hence, w( f ) ≤ 2

3 n. In particular, when 
|X1| ≥ 3, we have w( f ) < 2

3 n. This also implies that if 
w( f ) = 2

3 n, it must be the case that dT (um−1) = 3 and 
|X1| = 2. �

Let f be a γR(G)-RDF (or a γr(G)-WRDF) of a graph 
G , such that the number of vertices labeled with 1 is the 
minimum. We call such function f a special γR(G)-RDF (or 
a special γr(G)-WRDF) of G and use FR(G) (or Fr(G)) to 
denote the set of all special γR (G)-RDFs (or γr(G)-WRDFs) 
of G . One can readily check that under a special γR(G)-RDF 
(or a γr(G)-WRDF), any strong support vertex is labeled 
with 2. Otherwise, we can assign to the support vertex a 
weight of 2 and its two leaf neighbors a weight of 0. Par-
ticularly, let g be a special γR (G)-RDF of G . Then, G does 
not contain three vertices u, v, w , such that vu, v w ∈ E(G)

and f (v) = 0, f (u) = f (w) = 1, or vu ∈ E(G) and f (v) =
2, f (u) = 1.

Theorem 2.2. Let T be a tree on n vertices, n ≥ 3. Then, γr(T ) =
2n/3 if and only if every vertex of degree at least two in T has 
exactly two leaf neighbors.

Proof. Let V ′ and V ′′ be the set of leaves and vertices with 
exactly two leaf neighbors in T , respectively. If V ′′ = V \V ′ , 
then n = 3|V ′′|. Let f ∈ Fr(T ). Then, every vertex in V ′′ is 
labeled with 2, and every vertex in V ′ is labeled with 0 
under f . Therefore, γr(T ) = w( f ) = 2|V ′′| = 2n/3.

Conversely, if γr(T ) = 2n/3, then let g be a special 
2n
3 -WRDF of T . Let P = u0u1 . . . um be the longest path 
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