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Invariant subspace attack is a novel cryptanalytic technique which breaks several recently 
proposed lightweight block ciphers. In this paper, we propose a new method to bound the 
dimension of some invariant subspaces in a class of lightweight block ciphers which have a 
similar structure as the AES but with 4-bit Sboxes. With assumptions on the diffusion layer, 
the dimension of any invariant subspaces is at most 32 when the inputs into each Sboxes 
are linearly independent. The observation brings new insights about the invariant subspace 
attack, as well as lightweight countermeasures to enhance the resistance against it.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Over the last few years, lightweight block ciphers have 
become the new trend of symmetric primitives which are 
suitable for various constrained environments [1–4]. Per-
formance always comes with a price. For the lightweight 
block ciphers, some of them trade in a tolerable amount of 
security margin under certain attack models to achieve im-
proved performance in hardware implementation. Without 
an explicit guideline, it is an interesting question whether 
a slight change towards higher efficiency may have devas-
tating consequences.

A new type of attack named invariant subspace attack 
[5] is of special interest. It was invented in the analysis of 
a lightweight block cipher PRINTcipher [6]. The discovery 
of invariant subspace attack often seems like ad-hoc, until 
a generic algorithm to detect the existence of the invari-
ant subspaces was proposed in 2015 [7]. Another victim of 
the attack is a recently-proposed block cipher Midori [3,8]. 
Unlike differential cryptanalysis [9] and linear cryptanaly-
sis [10] which are extensively studied and comprehensively 
understood, a guideline of avoiding the invariant subspace 
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attack needs to be drawn by a “provably secure” frame-
work.

A short solution to resist invariant subspace attack is to 
use heavier key schedules or randomised constants. How-
ever, in lightweight designs, an ultra-light key schedule 
reduces the hardware cost greatly. In the meantime, there 
are designs without key schedule yet having shown no vul-
nerability to the invariant subspace attack so far, such as 
Fantomas [11].

In this paper, we focus on the lightweight AES-like ci-
phers with 4-bit Sboxes. It can be shown that the dimen-
sion of an invariant subspace is upper bounded by 32. Due 
to the fact that the majority of lightweight block ciphers 
follow a similar structure with the AES, it may cast light 
on the provable security framework against invariant sub-
space attack for lightweight designs.

The rest of this paper is organised as follows. In Sec-
tion 2, we show the propagation of affine subspaces 
through a round function. Section 3 studies the invari-
ant subspace in the AES-like lightweight block ciphers and 
new countermeasures. Finally, we conclude in Section 4.

2. Characterisation of invariant subspace attack

We denote an n-bit vector in F2n by x = (xn−1, xn−2,

. . . , x0). An affine subspace of Fs
2t is denoted by W = (W1,
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W2, . . . , W s) where W i is an affine subspace on F2t . The 
cardinality of a set S is denoted by |S|. Denote by “·” the 
inner product. For a vectorial boolean function f over Fn , 
the component function fλ is the boolean function λ · f , 
where λ ∈ Fn is nonzero.

Suppose that the round function F is composed with 
an Sbox layer Fs , a linear layer Fl and a key addition Fk , 
where F = Fk ◦ Fl ◦ Fs . If there exists an affine subspace 
v + A such that it is stable under F , F (v + A) = v + A, 
then when the round key k ∈ v +u + A, we have (Fl ◦ Fs)×
(v + A) = u + A. It means that the invariant subspace 
property in the round function of a key-alternating block 
cipher is equivalent to the propagation of special affine 
subspaces [5]. It is interesting to notice that the propaga-
tion of affine spaces is also discussed in other studies, such 
as plateau characteristics [12]. Since the inverse of a linear 
layer is also linear, one has Fs(v + A) = F −1

l (u) + F −1
l (A). 

Therefore, next we will focus on the propagation of affine 
subspaces through a layer of Sboxes.

Definition 1. Let f be a (nonlinear) function from F2n into 
F2m . If an affine subspace (v + A) ⊆ F2n is mapped to
(u + B) ⊆ F2m which is also an affine subspace, then 
(v + A → u + B) is called an affine subspace propagation.

The linear relation (v, w)-linear in the Sboxes has been 
studied by Boura et al. in [13] where the component func-
tion of an Sbox Sλ, λ ∈ W with |W | = w is of degree at 
most 1 over all cosets of V with |V | = v . However, in most 
applications, the property only holds for certain cosets. 
Therefore, we introduce the following notion.

Definition 2. Let f be a function from F2n into F2m . Then, 
f is called linear with respect to (V , W ) if there exist two 
affine subspaces V ⊆ F2n and W ⊆ F2m with dim V = v
and dim W = w , such that, for all λ ∈ W , fλ has degree at 
most 1 on V .

The propagation of affine subspaces through 4-bit 
Sboxes has been discussed with the difference distribu-
tion table by Guo et al. in [8], while in this paper, we aim 
to fit it into the framework of the criterion on linear re-
lations in Sboxes [13]. For the sake of completeness, we 
present the following proposition.

Proposition 1. Let S be an s-bit Sbox. Then the image of a 
2-dimensional affine subspace v + A under the Sbox is also an 
affine subspace u + B of dimension 2 if and only if the Sbox is 
linear with respect to (v + A, F2s ).

In most lightweight block cipher designs, optimal 3-bit 
and 4-bit Sboxes are usually adopted to obtain optimised 
performance in hardware. It is easy to show that no op-
timal 4-bit Sbox admits 3-dimensional affine subspace 
propagations, while many transitions of 2-dimensional and 
1-dimensional affine subspaces can be found. Hence, we 
focus on the 3-bit and 4-bit Sboxes in the sequel.

Theorem 1. Let S be an optimal s-bit Sbox with s = 3, 4. Then 
the image of an affine subspace v + A with dimension no larger 

Fig. 1. The propagation of affine subspaces in the AES-like∗ cipher.

than s − 1 under the Sbox is also an affine subspace u + B if and 
only if S is linear with respect to (v + A, F2s ).

Proof. The proof follows from the transition of spaces in 
3- and 4-bit Sboxes. �
Theorem 2. Let F = (S0, S1, . . . , Sb−1) be a layer of optimal 
s-bit (s = 3, 4) Sboxes. Then there exists an affine subspace 
v + A = (v0 + A0, v1 + A1, . . . , vb−1 + Ab−1) whose image 
through the Sbox layer is also an affine subspace u + B = (u0 +
B0, u1 + B1, . . . , ub−1 + Bb−1) if and only if vi + Ai = F

s
2 or F

restricted on vi + Ai is a linear transformation, 0 ≤ i ≤ b − 1.

3. Bounding the invariant subspaces in the AES-like∗
ciphers

3.1. AES-like∗ ciphers

The success of the AES invokes many designs taking a 
similar structure, to name but a few, LED [14], Midori [3]
and KLEIN [15]. The states (s0, s1, . . . , s15) can be arranged 
by a 4 × 4 matrix, with each state being of 4-bit or 8-bit. 
The round function of an AES-like cipher includes SubByte 
(or SubCell), ShiftRow (or ShuffleCell), MixColumn, KeyAdd 
and ConstAdd. The first three operations are on 4-bit or 
8-bit words, which means there are no bit-level opera-
tions. Here we focus on the lightweight AES-like ciphers 
with 4-bit Sboxes, and denote them by AES-like∗ .

3.2. Bounds on invariant subspace attacks in AES-like∗

The invariant subspace attacks up-to-date are found in 
two ways, ad-hoc or heuristic search. Rather than checking 
possible attacks after every adjustment of parameters and 
components, it is preferable for designers to have a guide-
line of avoiding the existence of large invariant subspaces 
during the design process. Based on the characterisations 
in the previous section, we will show that the dimension 
of some invariant subspaces in AES-like∗ ciphers can be 
bounded.

Assume that there exists an invariant subspace A =
(A1, A2, . . . , A16) in the round function of an AES-like∗
block cipher. We ignore the KeyAdd and ConstAdd for 
a moment, since they have no influence on the dimen-
sion of the affine subspaces. According to Theorem 2, 
the output sets after SubCell, ShuffleCell are also affine 
subspaces. Hence we denote the output sets B, D after 
SubCell and ShuffleCell by B = (B1, B2, . . . , B16) and D =
(D1, D2, . . . , D16), as illustrated in Fig. 1.

We limit the input space A = (A1, A2, . . . , A16) to be 
such that the restrictions Ai over each Sbox are linearly 
independent with each other. Then, we have the following 
bound on the dimension of the invariant subspaces.
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