
Information Processing Letters 138 (2018) 57–60

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Analyzing linearizability violations in the presence

of read-modify-write operations

Hua Fan ∗, Wojciech Golab ∗∗,1

Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave. West, Waterloo, Ontario, N2L 3G1, Canada

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 August 2014
Received in revised form 23 November 2017
Accepted 5 June 2018
Available online 18 June 2018
Communicated by Gregory Chockler

Keywords:
Distributed systems
Consistency
Linearizability
Verification

We consider an algorithmic problem related to analyzing consistency anomalies in
distributed storage systems. Specifically, given a history of read, write, and read-modify-
write operations applied by clients, we quantify how far the history deviates from the “gold
standard” of linearizability (Herlihy and Wing, 1990). Our solution generalizes a known
algorithm that considers reads and writes only.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Distributed storage systems support essential online
services including web search, social networking, and
cloud file sharing. To meet stringent demands for high
availability and low latency, such systems maintain mul-
tiple replicas of data, often in geographically distributed
data centers. Storage operations are therefore executed us-
ing distributed protocols that ensure crucial correctness
properties in a highly concurrent, failure-prone environ-
ment. Reasoning about the correctness of such protocols
is notoriously difficult, especially for systems that support
lightweight transactions (e.g., conditional write operations,
increments) and latency-reducing optimizations (e.g., even-
tual consistency).

* Principal corresponding author.

** Corresponding author.
E-mail addresses: h27fan@uwaterloo.ca (H. Fan), wgolab@uwaterloo.ca

(W. Golab).
1 Author supported by the Google Faculty Research Awards Program

and the Natural Sciences and Engineering Research Council (NSERC) of
Canada, Discovery Grants Program.

In this paper we focus on “black-box” testing of the
consistency of a distributed storage system. The input is a
history of operations applied to the system, and the output
is a number that quantifies how far the history deviates
from Herlihy and Wing’s linearizability property [1]. Vio-
lations of linearizability, such as stale reads that fail to
return the last updated value, can be quantified in units
of time using the recently proposed � (Gamma) metric [2].
Such tests are more broadly applicable than rigorous proofs
of correctness and model checking techniques, both of
which assume knowledge of the system’s internals and ap-
ply to an abstract model that may differ from the practical
implementation.

Our contribution is an efficient algorithm for comput-
ing � given a history of read, write, and read-modify-write
(e.g., conditional write) operations. The algorithm has time
complexity O (n2) for a history of n operations, and gener-
alizes a solution of Golab et al. for histories of reads and
writes [2]. The simpler problem of deciding linearizabil-
ity, which is equivalent to deciding whether � equals zero,
was solved earlier by Misra [3] and by Gibbons and Ko-
rach [4]. Known algorithms for computing � and deciding
linearizability efficiently assume a read mapping: for every
operation that reads a value, the operation that wrote this

https://doi.org/10.1016/j.ipl.2018.06.004
0020-0190/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.ipl.2018.06.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:h27fan@uwaterloo.ca
mailto:wgolab@uwaterloo.ca
https://doi.org/10.1016/j.ipl.2018.06.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2018.06.004&domain=pdf

58 H. Fan, W. Golab / Information Processing Letters 138 (2018) 57–60

value can be identified uniquely. Deciding linearizability is
NP-complete otherwise [4], and solvable using state space
exploration [5].

2. Preliminaries

Similarly to [1,4], we formalize the observed behav-
ior of a storage system as a history—a sequence of events
representing invocations and responses of operations. Lin-
earizability is a widely-adopted correctness condition for
histories [1]. Informally, it states that one can assign for
each operation a distinct linearization point (LP) between its
invocation and response where it “appears to take effect.”
More precisely, if operations on a given object are ordered
according to their LPs, their responses must be consistent
with some sequence of state transitions permitted by the
object’s sequential specification. For example, updates ap-
pear to take effect serially, and reads always return the last
updated value.

To quantify linearizability violations in units of time, we
generalize the definition of a history from [1] by assuming
that events are ordered by explicit timestamps. The invo-
cation and response timestamp of an operation op are de-
noted as inv(op) and rsp(op), respectively. The time inter-
val for such an op is the closed interval [inv(op), rsp(op)],
inv(op) < rsp(op). The �-relaxation of a history is obtained
by shifting the invocation and response times by −�/2 and
+�/2 time units, respectively. The �-value of a history is
the minimum � for which the �-relaxation of the history
is linearizable [2].

Because linearizability is a local property [1], the
�-relaxation of a history is linearizable if and only if, for
each object x, the subhistory of the �-relaxation compris-
ing operations applied to x is linearizable. Therefore, to
compute the �-value of a history H it suffices to compute
the �-value of each subhistory where all operations are ap-
plied to a common object, and then obtain the maximum.
The subhistory that requires the greatest �-relaxation de-
termines the �-value of H .

In this paper, we consider three types of operations
on objects: a read of value v is denoted (R, v); a write
of value v is denoted (W , v); and a read-modify-write
(RMW) that atomically reads vr and then writes v w , v w �=
vr , is denoted (RW , vr, v w).2 An operation (W , v w) or
(RW , vr, v w) is called dictating with respect to an oper-
ation (R, v ′

r) or (RW , v ′
r, v ′

w) if v w = v ′
r .

We make several assumptions regarding histories:
(A1) following [2,4], each operation has both an invocation
and a response event; (A2) the history begins with a write
operation that assigns the initial value of the shared object,
and that does not overlap in time with any other opera-
tion; (A3) each write or RMW operation assigns a unique
value; (A4) each read or RMW operation has a dictating
operation; and (A5) two RMW operations never read the
same value. Assumptions A3–A4 establish the read map-
ping and circumvent NP-completeness. Assumptions A1–A5
collectively ensure that the history can be made lineariz-
able by way of �-relaxation alone, as opposed to by adding

2 An unsuccessful Compare-And-Swap operation is represented by a
read.

or removing operations, and this implies that the � value
of the history is well-defined.

To express our result, we borrow a number of defi-
nitions from [4]. For any value v , the cluster for v , de-
noted Cv , is the set of all operations that read value v ,
as well as their unique dictating operation.3 The zone for
a cluster Cv , denoted Z v , is the closed interval of time
between Z v .minrsp = minop∈C v rsp(op) and Z v .maxinv =
maxop∈C v inv(op). Intuitively, Z v is a minimal subset of
points in time where the LPs of operations in C v may
be chosen. A zone Z v is called forward if Z v .minrsp <
Z v .maxinv , meaning that the object had value v continu-
ously from time Z v .minrsp to time Z v .maxinv . Z v is called
backward if Z v .minrsp ≥ Z v .maxinv , meaning that all oper-
ations in Cv overlap over the zone, and so the object had
value v at least at some point inside the zone.

Gibbons and Korach characterize linearizability for his-
tories of reads and writes as the absence of conflicts
among pairs of zones [4]. Conflicts occur when two for-
ward zones overlap, or when a backward zone is con-
tained entirely within a forward zone. For histories that
contain RMW operations, the clusters are first arranged
into cluster sequences of the form S = C v1 Cv2 . . . Cvk where
(W , v1) ∈ Cv1 and (RW , vi−1, vi) ∈ Cvi for 1 < i ≤ k.4

A zone is defined for each cluster sequence S as the inter-
val between Sminrsp = minop∈Ci ,Ci∈S rsp(op) and Smaxinv =
maxop∈Ci ,Ci∈S inv(op). The history is linearizable if and
only if: (i) there are no conflicts among pairs of zones rep-
resenting cluster sequences; and (ii) each cluster sequence
is linearizable. The interval structure makes it possible to
decide linearizability in O (n log n) time for a history of n
operations [4].

3. Results

In this section we present our novel algorithm for com-
puting � in histories of read, write and RMW operations.
The main technical challenge lies in characterizing lin-
earizability solely in terms of conflicts among zones; this
reduces the problem of computing � to deciding the min-
imum �-relaxation required to remove every conflict [2].
Because Gibbons and Korach’s verification algorithm (dis-
cussed at the end of Section 2) is only partially zone-based,
we first modify it by introducing a new conflict type—
descendant-precedence—to model conflicts within a single
cluster sequence. Following [2], we also consider as a con-
flict the case where an operation that reads a value v
completes before the operation that writes v . The final �
algorithm based upon these ideas appears in Section 3.2.

3.1. Linearizability verification using conflict detection

We first characterize linearizability for reads, writes and
RMW operations in terms of zone conflicts alone. We say
that a zone Z v precedes a zone Z v ′ , (v �= v ′), denoted

3 An RMW operation is always part of two clusters under assump-
tions A1–A4.

4 Assumption A2 ensures that (W , v1) exists to form the cluster se-
quence.

Download English Version:

https://daneshyari.com/en/article/6874132

Download Persian Version:

https://daneshyari.com/article/6874132

Daneshyari.com

https://daneshyari.com/en/article/6874132
https://daneshyari.com/article/6874132
https://daneshyari.com

