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A packing k-coloring for some integer k of a graph G = (V , E) is a mapping ϕ : V →
{1, . . . , k} such that any two vertices u, v of color ϕ(u) = ϕ(v) are in distance at least 
ϕ(u) + 1. This concept is motivated by frequency assignment problems. The packing 
chromatic number of G is the smallest k such that there exists a packing k-coloring of G .
Fiala and Golovach showed that determining the packing chromatic number for chordal 
graphs is NP-complete for diameter exactly 5. While the problem is easy to solve for 
diameter 2, we show NP-completeness for any diameter at least 3. Our reduction also 
shows that the packing chromatic number is hard to approximate within n1/2−ε for any 
ε > 0.
In addition, we design an FPT algorithm for interval graphs of bounded diameter. This 
leads us to exploring the problem of finding a partial coloring that maximizes the number 
of colored vertices.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Given a graph G = (V , E) and an integer k, a packing 
k-coloring is a mapping ϕ : V → {1, . . . , k} such that any 
two vertices u, v of color ϕ(u) = ϕ(v) are in distance at 
least ϕ(u) + 1. An equivalent way of defining the pack-
ing k-coloring of G is that it is a partition of V into sets 
V 1, . . . , Vk such that for all k and any u, v ∈ Vk , the dis-
tance between u and v is at least k + 1. The packing chro-
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matic number of G , denoted χP (G), is the smallest k such 
there exists a packing k-coloring of G .

The definition of packing k-coloring is motivated by fre-
quency assignment problems. It emphasizes the fact that 
the signal on different frequencies can travel different dis-
tances. In particular, lower frequencies, modeled by higher 
colors, travel further so they may be used less often than 
higher frequencies. The packing coloring problem was in-
troduced by Goddard et al. [11] under the name broad-
casting chromatic number. The term packing coloring was 
introduced by Brešar, Klavžar, and Rall [2].

Determining the packing chromatic number is often dif-
ficult. For example, Sloper [14] showed that the packing 
chromatic number of the infinite 3-regular tree is 7 but the 
infinite 4-regular tree does not admit any packing coloring 
by a finite number of colors. Results of Brešar, Klavžar, and 
Rall [2] and Fiala, Klavžar and Lidický [8] imply that the 
packing chromatic number of the infinite hexagonal lattice 
is 7.
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Looking at these examples, researchers asked the ques-
tion if there exists a constant p such that every subcubic 
graph has packing chromatic number bounded by p. A very 
recent result of Balogh, Kostochka and Liu [1] shows that 
there is no such p in quite a strong sense. They show that 
for every fixed k and g ≥ 2k + 2, almost every n-vertex cu-
bic graph of girth at least g has packing chromatic number 
greater than k. It is still open if a constant bound holds for 
planar subcubic graphs, and no deterministic construction 
of subcubic graphs with arbitrarily high packing chromatic 
number is known.

Despite a lot of effort [8,11,13,15], the packing chro-
matic number of the square grid is still not determined. It 
is known to be between 13 and 15 due to Barnaby, Franco, 
Taolue, and Jos [13], who use state of the art SAT-solvers to 
tackle the problem. In this paper, we consider the packing 
coloring problem from the computational complexity point 
of view. In particular, we study the following problem.

Packing k-coloring of a graph

Input: A graph G and a positive integer k.
Question: Does G allow a packing k-coloring?

1.1. Known results

We characterize our algorithmic parameterized results 
in terms of FPT (running time f (k)poly(n)) and XP (run-
ning time n f (k)) where n is the size of the input, k is the 
parameter and f is any computable function. The inves-
tigation of computational complexity of packing coloring 
was started by Goddard et al. [11] in 2008. They showed 
that packing k-coloring is NP-complete for general graphs 
and k = 4 and it is polynomial time solvable for k ≤ 3. Fi-
ala and Golovach [7] showed that packing k-coloring is 
NP-complete for trees for large k (dependent on the num-
ber of vertices).

For a fixed k, packing k-coloring is expressible in 
MSO1 logic. Thus, due to Courcelle’s theorem [4], it ad-
mits a fixed parameter tractable (FPT) algorithm parame-
terized by the tree-width or clique-width [5] of the graph. 
Moreover, it is solvable in polynomial time if both the 
tree-width and the diameter are bounded [7]. The problem 
remains in FPT even if we fix the number of colors that 
can be used more than once by the extended framework 
of Courcelle, Makowsky and Rotics [5], see Theorem 11. 
On the other hand, the problem is NP-complete for chordal 
graphs of diameter exactly 5 [7], and it is polynomial time 
solvable for split graphs [11]. Note that split graphs are 
chordal and have diameter at most 3. However, packing 
k-coloring admits an FPT algorithm on chordal graphs pa-
rameterized by k [7].

1.2. Our results and structure of the paper

In Section 2, we describe new complexity results on 
chordal, interval and proper interval graphs. We improve 
a result by Fiala and Golovach [7] in Theorem 5, where 
we show that computing packing chromatic number of 
chordal graphs of any diameter greater or equal than three 

is NP-complete. Moreover, the reduction implies an inap-
proximability result based on the inapproximability of the 
size of the largest independent set. Proposition 3 shows 
that calculating the packing chromatic number of chordal 
graphs of diameter less than three is can be done in poly-
nomial time.

We complement these results by several FPT and XP al-
gorithms for calculating the packing chromatic number on 
interval and proper interval graphs. We use dynamic pro-
gramming to get an XP algorithm for interval graphs of 
bounded diameter, see Theorem 6. For unit interval graphs, 
there is an FPT algorithm parameterized by the size of 
the largest clique, see Theorem 9. Note that the existence 
of an FPT algorithm for calculating the packing chromatic 
number parameterized by path-width would imply an FPT
algorithm for general interval graphs parameterized by the 
size of the largest clique, but existence of such algorithm 
remains an open question. We also provide an XP algo-
rithm calculating the packing chromatic number for inter-
val graphs parameterized by the number of colors that can 
be used more than once, see Theorem 10.

In Subsection 2.1, we describe complexity results and 
algorithms parameterized by structural parameters. We de-
sign FPT algorithms for them. For standard notation and 
terminology we refer to the recent book about parameter-
ized complexity [6].

The packing coloring problem is interesting only when 
the number of colors is not bounded. Otherwise, we can 
easily model the problem by a fixed MSO1 formula and 
use the FPT algorithm by Courcelle [4] parameterized by 
the clique-width of the graph. We show that we can do 
a similar modeling even when we fix only the number of 
colors that can be used more than once and then use a 
stronger result by Courcelle, Makowsky and Rotics [5] that 
gives an FPT algorithm parameterized by clique-width of 
the graph (Theorem 11).

If the number of such colors is part of the input, then 
we can solve the problem on several graph classes. If they 
have a bounded diameter, then we can use Theorem 11
due to the following easy observation.

Observation 1. Let G be a graph of bounded diameter. 
Then G has a bounded number of colors that can be used 
more than once.

This observation together with Theorem 11 implies that 
the problem is FPT for any class of graphs of bounded 
shrub-depth. Any class of graphs that has bounded shrub-
depth has a bounded length of induced paths ([10], Theo-
rem 3.7) and thus bounded diameter. The same holds for 
graphs of bounded modular-width as they have bounded 
diameter according to Observation 2. On the other hand, 
the problem was shown to be hard on graphs of bounded 
tree-width [7], in fact the problem is NP-hard even on 
trees. There seems to be a big gap and thus interest-
ing question about parameterized complexity with respect 
to path-width of the graph. It still remains open (Ques-
tion 14). Note that the original hardness reduction by Fiala 
and Golovach [7] has unbounded path-width. See Fig. 2 for 
an overview of the results with respect to the structural 
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