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In a paper first appeared at SODA ’07, Eppstein proved that testing the 3-colorability of 
arrangements of line segments is an NP-complete problem. However, if the slopes of the 
segments are limited to three different values, a 3-coloring can be trivially obtained by 
assigning the same color to all the segments having the same slope.
We thus study the complexity of testing the 3-colorability of arrangements of line 
segments, or equivalently of their intersection graphs, that are restricted to have a constant 
number s > 3 of slopes, and prove that this remains NP-complete even for s = 4, which is 
hence tight. More in general, we prove that k-coloring arrangements of line segments is 
NP-complete even if the segments have at most k + 1 slopes.
Since the problem of computing a k-coloring of an arrangement of line segments is 
equivalent to computing the constrained geometric thickness of a straight-line drawing 
of a graph in the plane, our result extends to this problem.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Coloring geometric objects in the plane in such a way 
that no two intersecting objects are assigned the same 
color is a famous problem in Graph Theory [1–5], bring-
ing together the two well-known problems of graph color-
ing [6] and of intersection representations of graphs [7].

In fact, given a set of objects in the plane, one can 
consider each object as a vertex of a graph whose edges 
are defined by the intersection pattern of the set of ob-
jects. This corresponds to interpreting the arrangement of 
the objects as a geometric intersection representation of 
the graph. Under this interpretation, coloring the objects 
in such a way that intersecting objects have different col-
ors is equivalent to coloring the vertices of the graph so 
that adjacent vertices have different colors.
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On the other hand, when the objects in the plane are 
(straight-)line segments, each of such objects may also be 
interpreted as an edge whose endvertices are placed at its 
endpoints. In this case, the whole representation would 
comprise a (straight-line) drawing of the resulting graph, 
and the problem of coloring the objects would correspond 
to the problem of computing a planar stratification [8] of 
such drawing, that is, an edge-coloring such that each set 
of edges having the same color induces a planar draw-
ing. The minimum number of colors needed for obtaining 
a planar stratification of a straight-line drawing is also 
known as the constrained geometric thickness [3,9] of such 
drawing.

The problem of coloring objects in the plane using a 
fixed number k of colors has been proved NP-complete
with k ≥ 3 for several types of objects, including simple 
ones like unit disks [2] and straight-line segments [3]. 
On the other hand, solving the problem for k = 2 can be 
done in polynomial time, as it corresponds to determining 
whether the intersection graph describing the intersection 
pattern is bipartite. In particular, an O (n log n)-time algo-
rithm exists for some types of geometric objects when 
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k = 2, e.g., straight-line segments and simple polygons in 
the plane [3].

In this paper we consider the setting of the problem in 
which the objects that have to be k-colored are straight-
line segments, which we call Line-Segment k-Colorability 
Problem (k-LSC). In particular, we study the complexity of
k-LSC when the number s of different slopes of the seg-
ments is bounded. The interest in this restriction comes 
from the observation that, if s is chosen to be small 
enough (in particular, s ≤ k), then k-LSC becomes trivial. In 
fact, since parallel segments cannot intersect each other,1

assigning the same color to all the segments with the same 
slope always yields a valid solution. We prove that k-LSC

remains NP-complete with k ≥ 3 even if s = k + 1. Due to 
the above observation, this result is tight with respect to 
the number of slopes. We remark that the reduction pro-
vided by Eppstein [3] to prove NP-completeness of k-LSC

with k ≥ 3 may produce instances in which s ∈ �(n).
The paper is structured as follows. In Section 2 we give 

basic definitions and present some related work. In Sec-
tion 3 we show our main result. Finally, in Section 4 we 
give concluding remarks and discuss some open problems.

2. Preliminaries

A graph G = (V , E) is a pair composed of a set V of 
vertices and a set E ⊆ V 2 of edges. A graph without self-
loops and multi-edges is simple. In the following, we will 
only consider simple graphs. A matching is a graph com-
posed of independent edges.

A drawing of a graph is a mapping of each vertex to a 
point of the plane and of each edge to a simple curve con-
necting its endpoints. A drawing of a graph is planar if the 
curves representing the edges do not cross except, possi-
bly, at common endpoints. A graph is planar if it admits a 
planar drawing.

The slope of a segment is the angular coefficient of the 
line passing through it. Given a set L of line segments, we 
denote by s(L) the number of different slopes of the seg-
ments in L.

A visibility representation of a planar graph G = (V , E)

maps each vertex in V to a horizontal segment and each 
edge (u, v) in E to a vertical segment not intersecting 
any horizontal segment and whose endpoints lie on the 
horizontal segments representing u and v . Visibility repre-
sentations can be constructed in polynomial time [10,11].

Given a planar graph G , the Planar Graph k-Color-

ability Problem (k-PGC) asks whether there exists a 
k-coloring of G , that is, a coloring of the vertices of G with 
at most k different colors so that no two adjacent vertices 
have the same color. Given a set L of open line segments 
in the plane such that any two of them intersect in at 
most one point, the Line-Segment k-Colorability Problem

(k-LSC) asks whether there exists a k-coloring of L, that is, 
a coloring of the segments in L with at most k different 

1 Degenerate intersections are usually not allowed in this context, that 
is, any two segments share at most one point and segments are consid-
ered as open curves. The latter restriction implies that collinear segments 
sharing an endpoint are not considered to be crossing.

colors so that no two intersecting segments have the same 
color.

Given a graph G and a straight-line drawing � of G , the
Planar k-Stratification Problem (k-PS) asks whether it is 
possible to partition the edges of G into at most k differ-
ent sets in such a way that no two edges in the same set 
intersect in �. Clearly, if we consider the set L that con-
tains an open line segment for each edge of G in �, then a 
bijection exists between the k-colorings of L and the valid 
partitions of the edges of G in � that determine a solu-
tion of k-PS. Observe that, given a straight-line drawing �
of G , the minimum k such that 〈G, �〉 is a positive instance 
of k-PS coincides with the constrained geometric thickness 
of �.

The k-LSC problem is known to be NP-complete [3] for 
k ≥ 3. The equivalence between k-LSC and k-PS implies the 
NP-completeness of k-PS as well, even though this connec-
tion has gone unnoticed in the original paper defining the
k-PS problem [8].

3. Reduction

In this section we describe the main result of the paper.

Theorem 1. The Line-Segment k-Colorability Problem of 
computing a k-coloring of a set L of line segments is NP-com-
plete for k ≥ 3 even if s(L) = k + 1.

Proof. The membership in NP follows from the member-
ship of the general problem in which there is no restriction 
on the value of s(L) [3]. We first prove the NP-hardness 
for k = 3 by means of a polynomial-time reduction from 
the NP-complete problem 3-PGC [12]. We defer the exten-
sion to k > 3 to the end of the proof. We note that the 
NP-hardness of the general problem was also proved [3] by 
means of a reduction from 3-PGC. However, in our reduc-
tion we exploit the properties of visibility representations 
to obtain an instance of k-LSC with a bounded number of 
slopes.

Given a planar graph G , we construct a set L of line 
segments with s(L) = 4 such that G admits a 3-coloring if 
and only if L admits a 3-coloring.

As a first step, construct a visibility representation �

of G on the integer grid by using any of the known 
polynomial-time algorithms [10,11]. We assume that in �
any two vertical segments have horizontal distance at least 
4 and any two horizontal segments have vertical distance 
at least 5. This is without loss of generality as new rows 
and columns can be introduced while preserving the rep-
resentation.

We consider the edges of G as oriented downward ac-
cording to �. Namely, whenever we refer to edge e = (u, v)

of G we assume that the horizontal segment representing 
u in � lies above the horizontal segment representing v
in �.

Refer to Fig. 1. For each horizontal segment represent-
ing a vertex u of G in �, add to L a copy s0(u) of such 
a segment. Then, for each edge e = (u, v) in G , consider 
the vertical segment representing e in �. Let a and b
be the endpoints of such a segment, where y(a) > y(b). 
Add to L a vertical segment s∞(e) with endpoints a′ and 
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