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a University of Louisville, Louisville, KY 40292, United States of America
b Alfréd Rényi Mathematical Institute, Budapest, Hungary

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 August 2017
Received in revised form 4 May 2018
Accepted 5 May 2018
Available online 17 May 2018
Communicated by Marek Chrobak

Keywords:
Interconnection networks
Combinatorial problems
Infinite grid
Linkage
Path-pairability

For k fixed, a graph G is k-path-pairable, if for any set of k disjoint pairs of vertices, si, ti , 
1 ≤ i ≤ k, there exist pairwise edge-disjoint si, ti-paths in G . Bounds on path-pairability are 
given here if G is the graph of the infinite integer grid in the Euclidean plane (vertices 
of G are the points of integer coordinates and two vertices are adjacent if and only if 
their Manhattan distance is 1). We prove that G is 10-path-pairable and at most 14-path-
pairable. Related results and conjectures are summarized also for the integer halfplane, for 
the positive integer quadrant and for finite grids.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The board of the game is an arbitrary (even infinitely) 
large grid drawn on a graph paper. An integer label from 
1, 2, . . . , k is placed at some crossings, each integer occur-
ing at exactly two places. The goal is to link the k pairs of 
the identically labeled points by paths along the lines of 
the board in such a way that those paths do not share a 
common line (although they may share common points).

Let’s have a round with k = 4 pairs placed randomly on 
a 5 × 5 board! Can you succeed on the boards in Fig. 1? 
Can you devise a practical procedure which solves the 
problem for any placement of those eight integer labels, 
say on a 19 × 19 board?

The different variations of our ‘linkage solitaire’ are 
not unknown subjects in discrete mathematics. As a ba-
sic framework one should mention the theory of multi-
commodity flows brilliantly surveyed in [16]. The restric-
tion of finding integer multiflows under unit capacity con-
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Fig. 1. Two boards to check 4-path-pairability.

straints leads to different concepts in pure graph theory. 
One must cite here fundamental edge-connectivity results 
due to Menger [12], the investigations pertaining to dis-
joint paths in [15], and further results on different linkage 
properties (e.g. in [3], [4], [6], [13], [14]).

Finding disjoint paths in grids has applications in many 
practical problems. The point-to-point delivery problem 
(see [11]) is to determine a set of disjoint ‘shipping’ paths 
matching the sources to destinations. A recent application 
where linkage problems on 2-dimensional grids are typi-
cal is VLSI-design (see [1]). In very large-scale integrated 
circuits several pairs of pins must be inter-connected by 
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wires on a chip, in such a way that the wires follow given 
‘channels’ and that the wires connecting different pairs of 
pins do not intersect each other.

The linkage game treated here and the general con-
cept of path-pairability originated in a practical problem 
concerning telecommunications network as first described 
in [2]. Such a data- or telephone network is a collection 
of terminals (hosts), links, and intermediate nodes which 
are assembled so as to enable communication between 
the terminals. In typical applications, pairs of communi-
cating terminals are connected through transmission links. 
Suppose that a terminal S wishes to communicate with 
another terminal T . In circuit switching mode, a dedi-
cated communication link is allocated between S and T , 
via a set of intermediate nodes and this linkage or path is 
maintained during the communication between S and T . 
It is assumed that no two communication paths between 
distinct pairs can share common communication lines, al-
though the paths can use common intermediate nodes. We 
require the network to allow messages to be passed simul-
taneously between any fixed number of disjoint pairs of 
nodes of the network.

Modeling the practical telecommunications networks 
problem led to the concept of path-pairability of graphs 
in Csaba et al. [2]. For fixed k, a graph G is k-path-
pairable, if for any set of k disjoint pairs of vertices 
called terminals, si, ti , 1 ≤ i ≤ k, there exist pairwise edge-
disjoint si, ti -paths in G . The path-pairability number, de-
noted pp(G), is the largest k such that G is k-path-pairable.

2. Path-pairability of the infinite grid

Let G be the graph of the infinite integer grid in the 
Euclidean plane R2. The vertices of G are the points of 
R

2 with integer coordinates and the points (x1, y1) and 
(x2, y2) are adjacent vertices of G if and only if |x1 − x2| +
|y1 − y2| = 1. Thus the edges of G are arranged into verti-
cal and horizontal lines of the plane (into two-way infinite 
paths – in terms of graph theory).

When proving that G is not k-path-pairable, we must 
exhibit a counterexample consisting of k terminal pairs 
that does not admit a linkage for the pairs. To see that 
no solution exists we use a necessary condition, called cut 
condition, and/or its ramifications.

As an example, the bound pp(G) < 19 follows from a 
pairing where one terminal from each of 19 pairs is lo-
cated at distinct points of a 4 × 5 rectangle R ⊂ G and 
the second members of the pairs are located anywhere in 
G − R . If there is a linkage for the pairs, then 19 edge-
disjoint paths must ‘escape’ from R , but there are only 18
outlets leading from R to G − R . In other words, as few as 
18 edges cut R from G − R , thus we might say, there is no 
solution because the cut condition is violated by this par-
ticular pairing. Sharper upper bounds can be obtained by 
using stronger necessary conditions derived from the cut 
condition as in the next proposition.

Proposition 1. The infinite grid is not 15-path-pairable.

Proof. Let Q ⊂ G be a 5 × 5 square grid with its four 
corners removed (see Fig. 2). We place terminals at all ver-

Fig. 2. pp(G) < 15.

tices of Q such that the terminals on the boundary form 
the pairs πi = {si, ti}, 1 ≤ i ≤ 6, and the pair of each termi-
nal at an interior vertex of Q is placed anywhere in G − Q . 
Assume on the contrary that there is a linkage for these 15
pairs.

There are 21 terminals located at the vertices of Q , and 
there are 20 outlets (5 at each of the four ends of Q ), 
where a terminal can escape from Q along a path to reach 
its pair. Since all terminals cannot leave Q , there is a pair 
π j , 1 ≤ j ≤ 6, that is linked by a path P j inside Q . Let C
be the set of 12 edges going out from the 3 × 3 square 
in the interior of Q . Observe that the path P j ⊂ Q uses 
(at least) two edges of C , furthermore, nine paths from the 
terminals in the interior of Q need to use 9 edges of C . 
Therefore, there is no other pair πi , i �= j, that is linked 
with a path inside Q .

Using the labels in Fig. 2, by symmetry, we may assume 
that j = 1 or 2. In each case P j uses one edge among the 
three edges of C between H = {s1, s2, s3} and Q − H . Thus 
only four terminals in Q can access the five outlets at H
(two terminals in H and two not in H), and the same is 
true for the five outlets at {t1, t2, t3}. Thus there remain 
2 × 4 + 2 × 5 = 18 outlets available to escape for the 5 ×
2 + 9 = 19 terminals in Q , a contradiction. �

For 1 ≤ i ≤ k, let πi = {si, ti} be an arbitrary pairing of 
2k terminals in the grid G . Let T be the set of those 2k
terminals and include T into a (smallest) rectangle R ⊂ G . 
A linkage for the k pairs can be obtained by a general 
two-stage procedure. This procedure is used in the proof 
of Proposition 2.

In the first stage we take the linkage of some pairs in-
side R , if we need; then every unlinked terminal u ∈ T
is mapped to a vertical or horizontal halfline �(u) going 
out from R with endpoint at u, and such that all those 
halflines are pairwise edge-disjoint and disjoint from the 
paths used in the initial linkage in R . To obtain such a 
mapping we shall use Hall’s classical matching theorem 
(see [5]).

In the second stage we take k pairwise vertex-disjoint 
cycles Fi ⊂ G , 1 ≤ i ≤ k, around R . Each of these cycles in-
tersect all the halflines assigned to unlinked terminals in 
the first stage and going out from R . For an unlinked ter-
minal u ∈ πi , 1 ≤ i ≤ k, let u∗ ∈ �(u) ∩ Fi . Then the linkage 
for any unlinked pair πi is completed along Fi between s∗

i
and t∗

i , referred as to the ‘mates’ of si and ti . A linkage for 
k = 4 obtained by this procedure is shown in Fig. 3.
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