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Locality Sensitive Hashing (LSH) is one of the most efficient approaches to the nearest 
neighbor search problem in high dimensional spaces. A family H of hash functions is called 
locality sensitive if the collision probability ph(r) of any two points 〈q, p〉 at distance r
over a random hash function h decreases with r. The classic LSH algorithm employs a data 
structure consisting of k ∗ � randomly chosen hash functions to achieve more desirable 
collision curves and the collision probability Ph�

k
(r) for 〈q, p〉 is equal to 1 − (1 − ph(r)k)�. 

The great success of LSH is usually attributed to the solid theoretical guarantee for Ph�
k
(r)

and ph(r).
In practice, however, users are more interested in recall rate, i.e., the probability that a ran-
dom query collides with its r-near neighbor over a fixed LSH data structure h�

k . Implicitly 
or explicitly, Ph�

k
(r) is often misinterpreted as recall rate and used to predict the perfor-

mance of LSH. This is problematic because Ph�
k
(r) is actually the expectation of recall rates. 

Interestingly, numerous empirical studies show that, for most (if not all) real datasets and 
a fixed sample of random LSH data structure, the recall rate is very close to Ph�

k
(r). In this 

paper, we provide a theoretical justification for this phenomenon. We show that (1) for 
random datasets the recall rate is asymptotically equal to Ph�

k
(r); (2) for arbitrary datasets 

the variance of the recall rate is very small as long as the parameter k and � are properly 
chosen and the size of datasets is large enough. Our analysis (1) explains why the practi-
cal performance of LSH (the recall rate) matches so well with the theoretical expectation 
(Ph�

k
(r)); and (2) indicates that, in addition to the nice theoretical guarantee, the mecha-

nism by which LSH data structures are constructed and the huge amount of data are also 
the main causes for the success of LSH in practice.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The nearest neighbor search (NNS) problem in high di-
mensional spaces is a fundamental problem that arises in 
numerous applications such as data mining, information 
retrieval and image search. While the exact NNS problem 
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seems to suffer from the “curse of dimensionality”, many 
efficient techniques have been devised for finding an ap-
proximate solution whose distance from the query point 
is at most c times the distance between the query and its 
nearest neighbor. One of the most versatile methods for 
approximate NNS is based on Locality Sensitive Hashing 
(LSH). Since introduced by Indyk and Motwani in [6], LSH 
has been widely applied in a variety of domains, including 
web clustering, computer vision and computational biol-
ogy [1,8].
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The LSH approach to the approximate NNS problem 
is based on the existence of the locality sensitive hash 
functions, which will be discussed in details in Section 2. 
Given a family of LSH functions H, the classic LSH method 
works as follows [6,4]. For parameters k and �, � func-
tions g j(q) = (h1, j(q), . . . , hk, j(q)) are chosen, where hi, j
(1 ≤ i ≤ k, 1 ≤ j ≤ �) is drawn independently and uni-
formly at random from H [6]. Given a dataset D, ∀o ∈ D
the bucket g j(o) is computed for j = 1, . . . , �, and then 
o is inserted into the corresponding bucket. To process a 
query q, one has to compute g j(q), j = 1, . . . , �, first, and 
then retrieve all points that lie in at least one of these 
buckets. For our purpose, we denote h and h�

k as a random 
LSH function and a random LSH data structure respectively, 
and the (uniformly drawn) samples of h�

k and h are de-
noted by h�

k and h, respectively.
LSH and its variants are capable of providing, with 

some constant success probability, excellent asymptotic 
performance in terms of space consumption and query 
cost [6,15,11,5]. The theoretical guarantee relies on the fact 
that, for any point pair 〈q, o〉 such that d(q, o) = r,1 the col-
lision probability ph(r) that 〈q, o〉 collides over h decreases 
monotonically with r [6]. As a quick result, the collision 
probability of 〈q, o〉 over h�

k , denoted by Ph�
k
(r), can be cal-

culated using Equation (1) since k ∗ � hash functions are 
drawn independently from H.

Ph�
k
(r) = 1 − (1 − ph(r)k)� (1)

In real-life applications, however, practitioners are more 
interested in recall rate [13,10,11], which is the probability 
that a random query q collides with its r-near neighbor o2

over a concrete LSH data structure. Formally, for a given 
dataset D and a sample h�

k of the random LSH data struc-

ture, recall rate Ph�
k
(Dr) is defined as |{〈q,o〉∈Or |h�

k(q)=h�
k(o)}|

|Dr | , 
where Dr = {〈q, o〉|q, o ∈D, d(q, o) = r}.3 While Ph�

k
(r) and 

Ph�
k
(Dr) are conceptually different, practitioners often use 

Ph�
k
(r) to predict the performance of LSH and the consis-

tency between Ph�
k
(Dr) and Ph�

k
(r) is deemed as an indica-

tor for the effectiveness of the proposed algorithms. Put it 
another way, Ph�

k
(Dr) is implicitly assumed to be (almost) 

equal to Ph�
k
(r) in practice.

Ph�
k
(r) = Eh�

k
[Ph�

k
(Dr)] (ph(r) = Eh[ph(Dr)]) (2)

Such an interpretation of Ph�
k
(r) is problematic because, 

as shown in Equation (2), Ph�
k
(r) and ph(r) are actually 

the expectations of Ph�
k
(Dr) and ph(Dr), respectively [12,

16]. For random variable X , using E[X] to predict a single 
sample of X usually leads to inaccurate estimation. Inter-
estingly enough, numerous empirical studies show that, for 
most (if not all) datasets and a fixed sample of random LSH 
data structure, Ph�

k
(Dr) is very close to Ph�

k
(r) [16,5,11,15,

1 d(q, o) is the distance between q and o.
2 The points that are at distance r from q.
3 ph(Dr) can be defined in a similar vein.

14]. We conjecture this may be the main reason for the 
misinterpretation of Ph�

k
(r). In this paper, we aim to pro-

vide a theoretical justification for this phenomenon.
A natural approach to this problem is to analyze 

the variance of Ph�
k
(Dr) and/or ph(Dr). Unfortunately, 

obtaining general close-formed expressions for them is 
intractable due to their data-dependent nature. As a 
workaround, we first consider the case of random datasets 
and derive ph(Dr) analytically for random inputs. It is 
shown that, for the Euclidean space, noticeable D[ph(Dr)]
exists because ph(Dr) is a function of the length of random 
vectors. To reduce D[ph(Dr)], we propose an enhanced 
LSH family in which the random vectors are all normalized 
to length 

√
n first.4 Not only owns the same collision prob-

ability as the existing LSH family, the proposed LSH family 
also provides better performance in terms of D[ph(Dr)].

For arbitrary datasets, deriving ph(Dr) analytically is 
nearly impossible. Therefore, we switch our attention to 
discuss the relation between D[Ph�

k
(Dr)] and D[ph(Dr)]. 

We show that the variance of Ph�
k
(Dr) is upperbounded by 

a function of k and D[ph(Dr)]. More importantly, numeri-
cal calculation indicates that, for large datasets, D[Ph�

k
(Dr)]

is two to three order of magnitude less than D[ph(Dr)] for 
a variety of k and � values adopted in real-life applications. 
As a result, practical D[Ph�

k
(Dr)] tends to be very small as 

long as the parameters k, � are chosen properly and the 
size of datasets is large enough, even if D[ph(Dr)] is mod-
erately large. Thus, by Chebyshev inequality the difference 
between Ph�

k
(r) and Ph�

k
(Dr) is bounded by a small con-

stant with high probability.
The results in this paper explain why the practical per-

formance of LSH (recall rate) matches so well with the 
theoretical expectation (Ph�

k
(r)). Moreover, our analysis re-

veals that, in addition to the nice theoretical guarantee, 
other factors such as the mechanism by which LSH data 
structures are constructed, proper parameter settings and 
the huge amount of data are also the main causes for the 
great success of LSH.

The rest of this article is organized as follows. A brief 
overview of LSH is provided in Section 2. The derivation 
of phDr) and the discussion on its relation with ph(r) for 
l2 distance are presented in Section 3. Section 4 discusses 
how D[Ph�

k
(Dr)] varies with D[ph(Dr)] and we conclude 

this paper with a summary of our results in Section 5.

2. Preliminaries

To solve the r-near neighbor search problem, Indyk 
and Motwani introduced the concept of Locality Sensitive 
Hashing in their influential paper [6]. The idea of random 
projection, however, can be traced back to much earlier 
work in [9,2]. The rationale behind LSH is that, by using 
specific hashing functions, we can hash the points such 
that the probability of collision for data points which are 
close to each other is much higher than that for those 
which are far apart. In the rest of this paper, we use H

4 n is the dimension of the Euclidean space.
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