Information Processing Letters 136 (2018) 59-63

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

The optimal routing of augmented cubes .

Check for
updates

b

Meirun Chen®*, Reza Naserasr

4 School of Applied Mathematics, Xiamen University of Technology, Xiamen Fujian 361024, China
b CNRS - IRIF UMR 8243, Université Paris Diderot - Paris 7, France

ARTICLE INFO ABSTRACT

Article history:

Received 24 January 2017

Received in revised form 21 February 2018
Accepted 6 April 2018

Available online 10 April 2018
Communicated by Benjamin Doerr

A routing in a graph G is a set of paths connecting each ordered pair of vertices. Load of

an edge e is the number of times it appears on these paths. The edge-forwarding index

of G is the smallest of maximum loads over all routings. Augmented cube of dimension n,

AQy, is the Cayley graph (Z7, {e1,€2,...,en, J2,..., Jn}) where e;’s are the vectors of the
n

standard basis and J; = Z ej. S.A. Choudum and V. Sunitha showed that the greedy
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Augmented cubes algorithm provides a shortest path between each pair of vertices of AQ,. Min Xu and
Edge forwarding index Jun-Ming Xu claimed that this routing also proves that the edge-forwarding index of AQ,
HMS-routing is 2"~1, Here we disprove this claim, by showing that in this specific routing some edges
Optimal routing are repeated nearly %2”‘1 times (to be precise, L?J for even values of n and (?1 for

Interconnection networks odd values of n). However, by providing other routings, we prove that 2"~ is indeed the

edge-forwarding index of AQj.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Heydemann et al. [4] introduced the notation of the
edge-forwarding index. Given a connected graph G of or-
der n, a routing R is a set of n(n — 1) elementary paths
R(u, v) specified for every ordered pair (u, v) of vertices
of G. The load (G, R,e) of an edge e with respect to R
is defined as the number of paths of R going through e.
The edge-forwarding index of G with respect to R, denoted
7 (G, R), is the maximum load of all edges of G. The min-
imum edge-forwarding index over all possible routings is
denoted by 7r(G) and is called the edge-forwarding index
of G. A routing for which 7 (G) is attained is called opti-
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mal. If each path in R is a shortest path connecting its two
ends, then the routing R is said to be a minimal routing.

In [1], Choudum and Sunitha introduced the augmented
cubes and studied them for application in routing and
broadcasting procedures. They provided several equivalent
definitions of these graphs. Here we present two defini-
tions, an inductive definition and a definition as a Cayley
graph. Let Z} be the n-dimensional binary group and let
X @ y denote the binary sum of vectors x and y in ZJ.
The inductive definition of the augmented cubes is as fol-
lows.

Definition 1. The augmented cubes of dimensions 1 and
2 are simply the complete graphs on two and four ver-
tices, respectively. For n > 2 the augmented cube of di-
mension n, denoted AQy, is a graph on Z3 built from two
copies AQY ; and AQ, , of AQ,_1 as follows: vertices
of AQ,?_l (respectively AQ;_l) are viewed as elements
of Z by adding a 0 (a 1) as the first coordinate. A ver-
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tex Ox in AQ,&1 is adjacent, furthermore, to vertices 1x
and (0x @3 J) in AQ,Ll where | is the all-1 vector in Z}.

Let T" be an additive group, and let S be a symmetric
subset of I" (i.e.,, —S = S) such that 0 is not in S. The Cayley
graph (T, S) is the graph whose vertices are elements of I’
where two vertices x and y are adjacent if x—y € S.

When the binary group Z} is considered, then for any
subset X we have X = —X. Let e/}, e}, ..., e} be the vectors
of the standard basis of Z3, thus e} is the binary vector of
length n whose ith-coordinate is 1 and all other coordi-
nates are 0. For i > 2, let JI be the binary vector of length
n where the last i coordinatesn are 1 and the first n —i co-

ordinates are 0, ie., JI' = Z efj. Then the augmented
j=n—i+1

cube of dimension n defined above is known to be isomor-

phic to the following Cayley graph.

Proposition 2. [1] For every n > 1, AQy, is isomorphic to the
Cayley graph (25, Sp), where S, = {e', e}, ..., eq, J5...., Jh}).

When it is clear from the context, we write eq, ey, ...,
ep and Ja,..., Jn in place of ef, e}, ..., e} and J3,..., J7.

Based on Cayley graph presentation of AQ, a minimal
routing R, of AQp, originally proposed in [1], is as follows:
Given vertices X and Y to find a shortest path from X to Y
we find the first coordinate (i) at which X and Y differ. If
X and Y also differ in the following coordinate (i + 1), then
we define X; = X + Jy—(i—1) (i.e., we change the values at
coordinates i and after), otherwise we define X1 = X +¢;
(i.e., we change the values only at coordinate i). Continu-
ing this process on the newly obtained vertex, we find a
shortest path to Y.

In [5], the authors studied the edge-forwarding index of
the augmented cubes. Among other results, they claimed
that 7(AQ,) =2""! and that this value is obtained by the
minimal routing R,. Here we show that the latter claim
is not correct, we show that the edge-forwarding index
of AQ, with respect to R, is nearly %2”‘1 (to be precise,

L?J for even values of n and f¥1 for odd values of n).
We then introduce a new optimal routing that prove the
claim 7 (AQ,) =2""1.

To present our work, we first present in Section 2 the
notion of an HMS-routing which was defined by Gauyacq
[3]. We show that the minimal routing R, [1] is an HMS-

routing. But its edge-forwarding index is L%J for even

values of n and f¥1 for odd values of n. For n =3, we

give a routing of AQ3; whose edge-forwarding index is 4.
However we prove that any HMS-routing of AQ3 has an
edge of load 6, i.e., the edge-forwarding index of any HMS-
routing of AQ3 is 6. For n > 4, we give an HMS-routing
of AQ, whose edge-forwarding index is 271,

2. HMS-routings in Cayley graphs

We would like to recall the HMS-routing defined in [3].
Let I' be an additive group which is commutative. Let S
be a symmetric subset of I" and (I, S) be the correspond-
ing Cayley graph. Let O denote the identity element of T.

For each y in T, the permutation ¢, of I' defined by
¢y (h) =y +h is an automorphism of (T, S) (i.e. a bijec-
tion that preserves adjacency). Furthermore, observe that
if P is a path connecting vertices x and y, then the image
of P under ¢, is a path connecting ¢, (x) and ¢, (y).

Given a Cayley graph G = (T', S), an HMS-routing R is
a routing satisfying the following. For every vertex v # 0
in T, the route R(0, v) is any shortest path from 0 to v.
For an arbitrary pair of vertices x and y in I' the route
from x to y is defined by R(x, y) = ¢x(R(0, y — X)).

We denote 00---0 by 0". Next, we want to prove that
the minimal routing R,, defined in [1] is an HMS-routing.

Observation 3. R, is an HMS-routing of AQ, for every
n>1.

Proof. We know from [1] that R, provides a shortest
path from 0 to x for any x € ZJ. It remains to show that
Rn(x,y) = ¢x(Rn(0, y — x)). But this follows from the fact
that vectors a and b of Z] differs in the same coordi-
nates as the vectors ¢y, (a) and ¢, (b). It would then be
enough to take a =x, b=y and y =x (noting that x = —x
inZ5). O

We recall some notations from [3]. Let (I',S) be a
Cayley graph. If v =u + s with s € S, then assign the
type s to the ordered pair (u, v), the type —s to the or-
dered pair (v, u) and say that the edge {u, v} is of type s
or of type —s. A path P = (ug,uq,...,uy) in (I',S) is
uniquely determined by its initial vertex ug and the se-
quence (s1,S2,...,S;) of the types of pairs of adjacent
vertices. In other words, for 1 <i <k, u; =u;_1 + s;. De-
note by ts(P) the number of times the generator s occurs
in the sequence (s1, S2, ..., Sk). The following theorem was
observed by Gauyacq [3].

Proposition 4. [3] Let R be an HMS-routing in a Cayley graph
(T, S). Let 0 be the identity and e be an edge of type s in (T, S).
The load of e for the routing R is

@)= Y RO V)+ Y (RO, V).

vel,v£0 vel,v#0

In the augmented cubes AQ, the identity is 0" and
s=—s for any s € S. We get the following corollary imme-
diately.

Corollary 5. Let R be an HMS-routing in AQp. The load of an
edge e of type s for the routing R is

Te)=2 >

XeV(AQp),X#0"

ts(R(0", X)).

The corollary shows that, for an HMS-routing, the load
of an edge depends only on its type. In a Cayley graph
the problem of finding a shortest path from 0 to a ver-
tex v is equivalent to finding a minimum length generating
sequence for the element v. The problem of finding a min-
imum length generating sequence is known to be NP-hard
[2]. More precisely, in [2] it is shown that given a set S of
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