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A set of vertices D of a graph G is geodetic if every vertex of G lies in a shortest path 
between two vertices in D . The geodetic number of G is the minimum cardinality of a 
geodetic set of G , and deciding whether it is at most k is an NP-complete problem for 
several classes of graphs. While the problem is easy for graphs of maximum degree at 
most 2, we show that the problem is NP-complete for graphs of maximum degree three.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Given a graph G = (V (G), E(G)) and two vertices u and 
v in G , the distance dG(u, v) is the length of a shortest 
path between u and v , or ∞ if no such path exists. The 
interval I[u, v] between u and v is the set of vertices of 
G that belong to a shortest path between u and v . If G is 
connected then a vertex w belongs to I[u, v] if and only if 
dG(u, v) = dG (u, w) + dG (w, v). For a set S of vertices, let 
the interval I[S] of S be the union of the intervals I[u, v]
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over all pairs of vertices u and v in S . A set of vertices S
is geodetic if I[S] ⊇ V (G).

The cardinality of a minimum geodetic set of G is the 
geodetic number of G , denoted by g(G). The problem of de-
ciding whether the geodetic number of a graph is at most 
k is NP-complete for general graphs [3] and it is known as 
the Geodetic Set problem. In fact, it is NP-complete even 
when restricted to chordal and bipartite chordal graphs [9]. 
However, for cographs and split graphs, g(G) can be com-
puted in linear time [9]; the authors have also provided 
an upper bound for unit interval graphs which is best pos-
sible. Brešar et al. [6] determined some exact values and 
upper bounds for the geodetic number of the Cartesian 
product of graphs in general. Cao et al. [7] presented exact 
values for the geodetic number of the Cartesian product 
Cn × Cm of two cycles.

Some variants of such a problem have been studied, 
such as the edge geodetic number [4], the geodetic num-
ber of oriented graphs [11], and the connected geodetic 
number [12]. The related problem of determining the hull 
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Fig. 1. Illustration for Definition 1: the graph Gu for a vertex u.

number was proved to be NP-hard for bipartite graphs [2], 
chordal graphs [5], and P9-free graphs [8]. Hansberg and 
Volkmann [10] studied the geodetic number from the 
point of view of domination; they showed that the prob-
lem of deciding if a chordal or chordal bipartite graph has 
a geodetic domination set of size at most k is NP-complete.

In this paper we prove that the problem of deciding 
the geodetic number of a graph is NP-complete even for 
subcubic graphs, i.e., graphs with maximum degree 3.

2. The geodetic number problem for subcubic graphs

In this section, we prove that Geodetic Set is NP-
complete for subcubic graphs. We organize the proof in 
two parts. In the former we show the NP-completeness of 
the problem for graphs with exactly one vertex with de-
gree greater than three. In the latter we show how we can 
replace this single vertex with large degree. Thus, using a 
similar strategy but with more complex gadgets we prove 
that Geodetic Set is NP-complete for subcubic graphs.

Let the union of graphs G1 and G2 be the graph G1 ∪
G2 = (V (G1) ∪ V (G2), E(G1) ∪ E(G2)), and the intersection
of G1 and G2 the graph G1 ∩ G2 = (V (G1) ∩ V (G2), E(G1) ∩
E(G2)). In addition, let LG be the set of pendant vertices 
(vertices with degree one) of G .

2.1. Graphs with only one vertex with degree greater than three

In order to show that such a problem is NP-complete 
for graphs with degree at most 3, we first present some 
definitions and preliminary results.

Definition 1. For a vertex u, let Gu arise from an empty 
graph by adding u, a special vertex z, and performing the 
following steps (see Fig. 1):
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Fig. 1 illustrates a graph Gu constructed as previously 
described.

Proposition 2. Let Gu be the graph as described in Definition 1. 
Then it holds that I[LGu ] = V (Gu) \ {u}.

Proposition 3. Let Gu be the graph as described in Definition 1. 
The vertices in V (Gu) \ {{u} ∪ {ua

i | 1 ≤ i ≤ 17}} belong to min-
imum paths between pendant vertices that do not traverse z.

One can verify Propositions 2 and 3 by analyzing all 
minimum paths between pendant vertices of Gu . Table 1
summarizes the main information.
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