
Information Processing Letters 135 (2018) 47–52

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Unifying theories of time with generalised reactive processes

Simon Foster ∗, Ana Cavalcanti, Jim Woodcock, Frank Zeyda

Department of Computer Science, University of York, York, YO10 5DD, United Kingdom

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 May 2017
Received in revised form 15 December 2017
Accepted 15 February 2018
Available online xxxx
Communicated by J.L. Fiadeiro

Keywords:
Formal semantics
Hybrid systems
Process algebra
Unifying theories
Theorem proving

Hoare and He’s theory of reactive processes provides a unifying foundation for the formal 
semantics of concurrent and reactive languages. Though highly applicable, their theory is 
limited to models that can express event histories as discrete sequences. In this paper, we 
show how their theory can be generalised by using an abstract trace algebra. We show how 
the algebra, notably, allows us to consider continuous-time traces and thereby facilitate 
models of hybrid systems. We then use this algebra to reconstruct the theory of reactive 
processes in our generic setting, and prove characteristic laws for sequential and parallel 
processes, all of which have been mechanically verified in the Isabelle/HOL proof assistant.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The theory of reactive processes provides a generic 
foundation for the denotational semantics of concurrent 
languages. It is part of the Unifying Theories of Program-
ming (UTP) [1,2] framework, which models computation 
using predicate calculus. The theory of reactive processes 
unifies formalisms such as CSP [3], ACP [4], and CCS [5]. 
This is possible due to its support for a large set of alge-
braic theorems that universally hold for families of reactive 
languages. The theory has been extended and applied to 
several languages including, stateful [6] and real-time lan-
guages, with both discrete [7] and continuous time [8,9].

Technically, the theory’s main feature is its trace model, 
which provides a way for a process to record an interac-
tion history, using an observational variable tr : seq Event. 
In the original presentation, a trace is a discrete event 
sequence, which is standard for languages like CSP. The 
alphabet can be enriched by adding further observational 
variables; for example, ref : P Event to model refusals [1].

* Corresponding author.
E-mail address: simon .foster @york.ac .uk (S. Foster).

Though sequence-based traces are ubiquitous for mod-
elling concurrent systems, other models exist. In particular, 
the sequence-based model is insufficient to represent con-
tinuous evolution of variables as present in hybrid systems. 
A typical notion of history for continuous-time systems are 
real-valued trajectories R≥0 → � over continuous state �.

Although the sequence and trajectory models appear 
substantially different, there are many similarities. For ex-
ample, in both cases one can subdivide the history into 
disjoint parts that have been contributed by different parts 
of the program, and describe when a trace is a prefix 
of another. By characterising traces abstractly, and thus 
unifying these different models, we provide a generalised 
theory of reactive processes whose properties, operators, 
and laws can be transplanted into an even wider spec-
trum of languages. We thus enable unification of untimed, 
discrete-time, and continuous-time languages. The focus of 
our theory is on traces of finite length, but the semantic 
framework is extensible.

We first introduce UTP and its applications (§2). We 
then show how traces can be characterised algebraically 
by a form of cancellative monoid (§3), and that this alge-
bra encompasses both sequences and piecewise continuous 
functions (§4). We apply this algebra to generalise the the-

https://doi.org/10.1016/j.ipl.2018.02.017
0020-0190/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.ipl.2018.02.017
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:simon.foster@york.ac.uk
https://doi.org/10.1016/j.ipl.2018.02.017
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2018.02.017&domain=pdf


48 S. Foster et al. / Information Processing Letters 135 (2018) 47–52

ory of reactive processes, and show that its key algebraic 
laws are retained in our generalisation, including those for 
sequential and parallel composition (§5).

Our work is mechanised in our theorem prover, Isabelle/
UTP1 [10], a semantic embedding of UTP in Isabelle/HOL. 
We sometimes give proofs, but these merely illustrate the 
intuition, with the mechanisation being definitive. To the 
best of our knowledge, this is the most comprehensive 
mechanised account of reactive processes.

2. Background

UTP is founded on the idea of encoding program be-
haviour as relational predicates whose variables corre-
spond to observable quantities. Unprimed variables (x) re-
fer to observations at the start, and primed variables (x′) 
to observations at a later point of the computation. The 
operators of a programming language are thus encoded 
in predicate calculus, which facilitates verification through 
theorem proving. For example, we can specify sequential 
programming operators as relations:

x := v � x′ = v ∧ y′
1 = y1 ∧ · · · ∧ y′

n = yn

P ; Q � ∃ x0 • P [x0/x′] ∧ Q [x0/x]
P � b � Q � (b ∧ P ) ∨ (¬b ∧ Q )

Assignment x := v states that x′ takes the value v and all 
other variables are unchanged. We define the degenerate 
form II � x := x, which identifies all variables. Sequential 
composition P ; Q states that there exists an intermediate 
state x0 on which P and Q agree. If-then-else conditional 
P � b � Q states that if b is true, P executes, otherwise Q .

UTP variables can either encode program data, or be-
havioural information, in which case they are called obser-
vational variables. For example, we may have ti, ti′ : R≥0
to record the time before and after execution. These en-
rich the semantic model, and are constrained by healthiness 
conditions that restrict permissible behaviours. For exam-
ple, we can impose ti ≤ ti′ to forbid reverse time travel.

Healthiness conditions are expressed as functions on 
predicates, such as HT (P ) � P ∧ ti ≤ ti′ , the application 
of which coerces predicates to healthy behaviours. When 
they are idempotent and monotonic, with respect to the 
refinement order 
, we can show, with the aid of the 
Knaster–Tarski theorem, that their image forms a complete 
lattice, which allows us to reason about recursion.

Healthiness conditions are often built from composi-
tions: H � H1 ◦ H2 ◦ · · · ◦ Hn . In this case, idempotence and 
monotonicity of H can be shown by proving that each H i
is monotonic and idempotent, and each H i and H j com-
mute. A set of healthy fixed-points, �H � � {P | H(P ) = P }, 
is called a UTP theory. Theories isolate the aspects of a 
programming language, such as concurrency, object orien-
tation, and real-time programming. Theories can also be 
combined by composing their healthiness conditions to en-
able construction of sophisticated heterogeneous and inte-
grated languages.

1 https :/ /github .com /isabelle -utp /utp -main.

Our focus is the theory of reactive processes, with 
healthiness condition R , which we formalise in Section 5. 
Reactive programs, in addition to initial and final states, 
also have intermediate states, during which the process 
waits for interaction with its environment. R specifies that 
processes yield well-formed traces, and that, when a pro-
cess is in an intermediate state, any successor must wait 
for it to terminate before interacting. This theory uses ob-
servational variable wait to differentiate intermediate from 
final states, and tr to record the trace.

UTP theories based on reactive processes have been ap-
plied to give formal semantics to a variety of languages [1,
11,12], notably the Circus formal modelling language fam-
ily [6], which combines stateful modelling, concurrency, 
and discrete time [7,13]. A similar theory has been used for 
a hybrid variant of CSP [9], with a modified notion of trace. 
Though sharing some similarities, these various versions of 
reactive processes are largely disjoint theories with distinct 
healthiness conditions. Our contribution is to unify them 
all under the umbrella of generalised reactive processes.

3. Trace algebra

In this section, we describe the trace algebra that un-
derpins our generalised theory of reactive processes. We 
define traces as an abstract set T equipped with two op-
erators: trace concatenation ̂ : T → T → T , and the 
empty trace ε : T , which obey the following axioms.

Definition 3.1 (Trace algebra). A trace algebra (T , ̂ , ε) is 
a cancellative monoid satisfying the following axioms:

x ̂(y ̂ z) = (x ̂ y) ̂ z (TA1)

ε ̂ x = x ̂ ε = x (TA2)

x ̂ y = x ̂ z ⇒ y = z (TA3)

x ̂ z = y ̂ z ⇒ x = y (TA4)

x ̂ y = ε ⇒ x = ε (TA5)

As expected, ̂ is associative and has left and right 
units. Axioms TA3 and TA4 show that ̂ is injective in 
both arguments. As an aside, TA3 and TA4 hold only in 
models without infinitely long traces, as such a trace x
would usually annihilate y in x ̂ y. Axiom TA5 states 
that there are no “negative traces”, and so if x and y con-
catenate to ε then x is ε. We can also prove the dual law: 
x ̂ y = ε ⇒ y = ε. From this algebraic basis, we derive 
a prefix relation and subtraction operator.

Definition 3.2 (Trace prefix and subtraction).

x ≤ y ⇔ ∃ z • y = x ̂ z

y − x �
{
ιz • y = x ̂ z if x ≤ y

ε otherwise

Trace prefix, x ≤ y, requires that there exists z that ex-
tends x to yield y. Trace subtraction y − x obtains that 
trace z when x ≤ y, using the definite description operator 

https://github.com/isabelle-utp/utp-main


Download English Version:

https://daneshyari.com/en/article/6874182

Download Persian Version:

https://daneshyari.com/article/6874182

Daneshyari.com

https://daneshyari.com/en/article/6874182
https://daneshyari.com/article/6874182
https://daneshyari.com

