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Minimum Diameter Color Spanning Set (MDCSS) on a given set of colored points is the 
problem of selecting one point from each color such that the diameter of the selected 
points gets minimized. In this paper, we present some approximation algorithms and show 
some results on approximability of this problem in low and high dimensions.

© 2018 Published by Elsevier B.V.

1. Introduction

Given a set of colored points, one may be interested in 
finding Minimum Diameter Color Spanning Set (MDCSS). 
The MDCSS problem is to compute a subset with mini-
mum diameter where it contains at least one point from 
each color. It is a case of the more general problem of com-
puting a color spanning set such that an extent measure 
gets minimized (or maximized).

Since the radius of the minimum enclosing ball for 
any point set is at most a constant factor of the diame-
ter, therefore, the Minimum Color Spanning Ball (MCSB) 
approximates the MDCSS. Recently, a linear time approxi-
mation scheme has been introduced for the MCSB [7] that 
is a constant factor approximation for the MDCSS. Also it 
is known that the MDCSS problem is NP-Hard even for 
the points in the plane [3]. Moreover, a polynomial time 
approximation scheme has been presented [4] that runs in 
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O (2
1
εd · ε−2d · n3) time. We aim to focus on and improve it 

as a part of our contributions.
In this paper, for the MDCSS problem, we propose a 

(1 + ε)-approximation algorithm that runs in 2O (γ log γ ) ×
O (n log n) time for MDCSS where d is the dimension and 
γ = ε

d−1
2 . We also demonstrate that by taking the Ex-

ponential Time Hypothesis (ETH), there is not any (1 +
ε)-approximation algorithm running in 2o(γ )poly(n) time 
for this problem. In high dimensional spaces, when the di-
mension is considered as an input parameter, we argue 
that there is not any polynomial time approximation al-
gorithm with ratio 

√
2 − ε for any ε > 0 unless P = NP. 

Furthermore, by using coreset for computing the mini-
mum enclosing ball [2], we show that there is a (

√
2 +

ε)-approximation algorithm running in O (dn�1/
√

2ε�+1)

time.

2. MDCSS problem in low dimensions

In this section, we approximate MDCSS in low dimen-
sions and give a lower bound for any approximation algo-
rithm. Throughout this section, we consider the dimension 
d as a constant.
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Let P be a set of n points in Rd partitioned into k
colors. A color spanning set is a subset that contains at 
least one point from each color. Let also CS be the collec-
tion of all color spanning subsets of P . The MDCSS prob-
lem is to compute a color spanning set S∗ ∈ CS in which 
�∗ = Diam(S∗) = mins∈CS Diam(S). Note that Diam(S) =
maxp,q∈S |p − q|.

2.1. Approximation algorithm

We sketch the algorithm as follows. We first consider 
a decision version of the problem in which we are given 
a parameter � in addition to the set of input points P , 
and the goal is to determine whether �∗ ≤ �. To approach 
this, we present an algorithm that gives a slightly loose 
answer. Strictly speaking, for the case where �∗ < (1 −
ε)� or �∗ > (1 + ε)�, the algorithm certainly makes the 
correct decision. Else, � is close enough to �∗ and can 
be considered as a good approximation. Finally, we use a 
binary search on WSPD pair distances to compute a (1 +
ε)-approximation.

Now, we have some definitions. Let us consider the 
set of grid points Z = {ax|x ∈ Z

d} where a is the grid 
side. For any point z = (z1, · · · , zd) ∈ Z, the set of grid 
cells incident to z is {[z1 − a, z1], [z1, z1 + a]} × · · · ×
{[zd − a, zd], [zd, zd + a]}. We define the parameter a such 
that a = �(ε�) and the diameter of any grid cell is at most 
ε�/4. Then, we round any point to its closest grid point. 
Let c(z) be the set of colors of points that are rounded to 
the grid point z. We can restate the problem in the follow-
ing way; The MDCSS problem on a multi colored grid Z
is to find a subset Z∗ with minimum diameter such that ⋃

z∈Z∗ c(z) covers all the colors.
Since any point in P has a unique color, there is a 

color with frequency at most n
k . Let us denote this color 

by c and the set of its points by P c . For any point p ∈ P c , 
G p denotes the set of all grid points which are incident 
to at least one grid cell that intersects the ball centered 
at p with radius �. G p contains O (1/εd) points. Since 
the distance of each point from its rounded variant is at 
most ε�

4 , it is adequate to solve MDCSS for G p and then 
take the minimum over all p ∈ P c . Indeed, by solving MD-
CSS over the rounded points, the additive error is at most 
ε�/2. Let �∗(G p) be the solution of MDCSS on G p . Be-
cause of rounding error, we know that there is a point 
p ∈ P c where �∗ − ε

2 � ≤ �∗(G p) ≤ �∗ + ε
2 �. Thus, if 

�∗(G p) < (1 − ε
2 )� or �∗(G p) > (1 + ε

2 )�, we make a cor-
rect decision. Otherwise, (1 −ε)� ≤ �∗ ≤ (1 +ε)� and we 
consider � as a (1 + ε)-approximation.

A naive algorithm to solve MDCSS over G P is to test 
all subsets. The number of the subsets is 2O (1/εd) and 
checking whether a subset is color spanning takes O (k/εd)

time. Since P c has at most n
k points, the algorithm runs 

in O (n)2O (1/εd) total time. Note that 2O (1/εd) dominates 
poly( 1

ε ).
To reduce the running time, instead of checking all sub-

sets, we guess an ε-kernel of the solution. A subset Q ⊆ P
is an ε-kernel if for any direction θ ∈R

d ,

max
x,y∈P

|〈θ, x − y〉| ≤ (1 + ε) max
x,y∈Q

|〈θ, x − y〉|;

where 〈., .〉 indicates the dot product of two vectors. In 
fact, in any direction the width of an ε-kernel is a (1 +
ε)-approximation of the width of the point set. Consider-
ing an ε-kernel suffices to approximate all extent measures 
including the diameter with ratio (1 + ε). Agarwal et al. 
[1] demonstrated that for any point set in Rd there is an 
ε-kernel of size O (1/ε

d−1
2 ) and it is also the worst case 

optimal. Let us denote the size of such an ε-kernel by γ .
Since an ε-kernel approximately preserves the diame-

ter, it suffices to guess an ε-kernel of the solution of the
MDCSS problem. For any subset Q ⊂ G p , let CH+(Q ) de-
note the set of all grid points which are in the convex hull 
of Q or incident with a cell that intersects the convex hull 
of Q . Thus, for any subset Q of size γ = O (1/ε

d−1
2 ), we 

consider CH+(Q ) as a candidate for the solution of MD-
CSS. This procedure is as complex as selecting γ points 
from O (1/εd). Now, we first estimate the number of ways 
to select γ things from γ 2.(

γ 2

γ

)
= 2log γ 2!−log γ !−log(γ 2−γ )!.

Then, by using Stirling’s formula;

lnγ 2! − lnγ ! − ln(γ 2 − γ )!
= γ 2 lnγ 2 − γ 2 − γ lnγ + γ − (γ 2 − γ ) ln(γ 2 − γ )

+ (γ 2 − γ ) + O (lnγ )

= γ 2 ln(
γ 2

γ 2 − γ
) + γ ln(γ − 1) + O (lnγ ) = O (γ logγ ).

Note that γ 2 ln(
γ 2

γ 2−γ
) = O (γ ). It is easy to see that (

O (1/εd)

γ

)
is also 2O (γ log γ ) . This is a significant im-

provement since γ 2 = O (1/εd). Therefore, we approxi-
mately solve the decision problem in O (n)2O (γ log γ ) time.

Now, all we need to approximate the MDCSS is to pre-
form a binary search on all pair distances as candidates 
for the solution. Because the number of pair distances 
is �(n2), instead, we use well separated pair decomposi-
tion (WSPD) to avoid a quadratic time. For a point set 
P , an ε-WSPD is a collection of pairs of subsets with 
some properties. We use an important property of WSPD 
here which states that for any pair x, y ∈ P there is a 
pair (Ai, Bi) ∈ ε−WSPD such that for any x′ ∈ Ai, y′ ∈ Bi , 
(1 − ε)d(x′, y′) ≤ d(x, y) ≤ (1 + ε)d(x′, y′). In other words, 
the distance of any pair in P is approximated by the dis-
tance of a pair in ε-WSPD with ratio 1 + ε . There are 
several algorithms to compute an ε-WSPD of size O (n/εd)

in O (n log n) time [5].
We first construct an ε

4 -WSPD, and then use a bi-
nary search on all of the pair distances. Since we have 
already ε

4 -WSPD, there is a pair distance � such that 
(1 − ε

4 )� ≤ �∗ ≤ (1 + ε
4 )�. Thus, if we build the grid 

points so that �∗ − ε
4 � ≤ �∗(G p) ≤ �∗ + ε

4 �, then a 
(1 +ε)-approximation can be computed by a binary search 
procedure. Hence, the following theorem holds.

Theorem 1. There is a (1 + ε)-approximation for MDCSS run-

ning in O (n logn)2O (γ log γ ) time where γ = 1/ε
d−1

2 .
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