
Information Processing Letters 135 (2018) 57–61

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

On the complexity of the quantified bit-vector arithmetic with

binary encoding

M. Jonáš ∗, J. Strejček

Faculty of Informatics, Masaryk University, Botanická 68a, 602 00, Brno, Czech Republic

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 September 2017
Received in revised form 21 February 2018
Accepted 23 February 2018
Communicated by Krishnendu Chatterjee

Keywords:
Computational complexity
Satisfiability modulo theories
Fixed-size bit-vectors

We study the precise computational complexity of deciding satisfiability of first-order
quantified formulas over the theory of fixed-size bit-vectors with binary-encoded bit-
widths and constants. This problem is known to be in EXPSPACE and to be NEXPTIME-hard.
We show that this problem is complete for the complexity class AEXP(poly) – the class of
problems decidable by an alternating Turing machine using exponential time, but only a
polynomial number of alternations between existential and universal states.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The first-order theory of fixed-size bit-vectors is widely
used for describing properties of software and hardware.
Although most current applications use only the quantifier-
free fragment of this logic, there are several use cases that
benefit from using bit-vector formulas containing quan-
tifiers [1–5]. Consequently, computational complexity of
quantified bit-vector logic has been investigated in re-
cent years. It has been shown that deciding satisfiability
of quantified bit-vector formulas is PSPACE-complete and
it becomes NEXPTIME-complete when uninterpreted func-
tions are allowed in addition to quantifiers [6].

However, these results suppose that all scalars in the
formula are represented in the unary encoding, which is
not the case in practice, because in most of real-world ap-
plications, bit-widths and constants are encoded logarith-
mically. For example, the format smt-lib [7], which is an
input format for most of the state-of-the-art smt solvers,
represents all scalar values as decimal numbers. Such rep-

* Corresponding author.
E-mail addresses: martin .jonas @mail .muni .cz (M. Jonáš),

strejcek @fi .muni .cz (J. Strejček).

resentation can be exponentially more succinct than the
representation using unary-encoded scalars. The satisfiabil-
ity problem for bit-vector formulas with binary-encoded
scalars has been recently investigated by Kovásznai et
al. [8]. They have shown that the satisfiability of quantified
bit-vector formulas with binary-encoded scalars and with
uninterpreted functions is 2-NEXPTIME-complete. The sit-
uation for the same problem without uninterpreted func-
tions is not so clear: deciding satisfiability of quantified
bit-vector formulas with binary encoded scalars and with-
out uninterpreted functions (we denote this problem as
BV2 satisfiability) is known to be in EXPSPACE and to be
NEXPTIME-hard, but its precise complexity has remained
unknown [8].

In this paper, we solve this open problem by identifying
the complexity class for which BV2 satisfiability is com-
plete. We use the notion of an alternating Turing machine
introduced by Chandra et al. [9] and show that the BV2

satisfiability problem is complete for the class AEXP(poly)

of problems solvable by an alternating Turing machine us-
ing exponential time, but only a polynomial number of
alternations.

https://doi.org/10.1016/j.ipl.2018.02.018
0020-0190/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.ipl.2018.02.018
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:martin.jonas@mail.muni.cz
mailto:strejcek@fi.muni.cz
https://doi.org/10.1016/j.ipl.2018.02.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2018.02.018&domain=pdf

58 M. Jonáš, J. Strejček / Information Processing Letters 135 (2018) 57–61

Table 1
Recursive definition of the formula size. Operations include logical con-
nectives, function symbols, and predicate symbols. Each ti denotes a sub-
term or a subformula, each i j denotes a scalar argument of an operation,
and Q ∈ {∃, ∀} [8].

Expression Size

Constant |c[n]| L(c) + L(n)

Variable |x[n]| 1 + L(n)

Operation |o(t1, . . . , tk, i1, . . . , ip)| 1 + ∑
1≤i≤k |ti | + ∑

1≤ j≤p L(i j)

Quantifier |Q x[n]ϕ| |x[n]| + |ϕ|

2. Quantified bit-vector formulas

The theory of fixed-size bit-vectors (BV or bit-vector the-
ory for short) is a many-sorted first-order theory with in-
finitely many sorts corresponding to bit-vectors of various
lengths. Each bit-vector variable has an explicitly assigned
sort, e.g. x[3] is a bit-vector variable of bit-width 3. The BV
theory uses only three predicates, namely equality (=), un-
signed inequality of binary-encoded non-negative integers
(≤u), and signed inequality of integers in 2’s complement
representation (≤s). The signature also contains constants
c[n] for each n ≥ 1 and 0 ≤ c ≤ 2n − 1, and various inter-
preted functions, namely addition (+), multiplication (∗),
unsigned division (÷), bitwise negation (∼), bitwise and
(&), bitwise or (|), bitwise exclusive or (⊕), left-shift (
),
right-shift (�), concatenation (·), and extraction of a sub-
word starting at the position i and ending at the position
j (extract(_, i, j)). Although various sources define the full
bit-vector theory with different sets of functions, all such
definitions can be polynomially reduced to each other [8].
All numbers occurring in the formula, i.e. values of con-
stants, bit-widths and bounds i, j of extraction, are called
scalars.

There are more ways to encode scalars occurring in the
bit-vector formula: in the unary encoding or in a logarithmic
encoding. In this paper, we focus only on formulas using
the binary encoding. This covers all logarithmic encodings,
since all of them are polynomially reducible to each other.
In the binary encoding, L(n) bits are needed to express
the number n, where L(0) = 1 and L(n) = �log2 n
 + 1 for
all n > 0. The entire formula is encoded in the following
way: each constant c[n] has both its value c and bit-width
n encoded in binary, each variable x[n] has its bit-width
n encoded in binary, and all scalar arguments of functions
are encoded in binary. The size of the formula ϕ is denoted
|ϕ|. The recursive definition of |ϕ| is given in Table 1. For
quantified formulas with binary-encoded scalars, we define
the corresponding satisfiability problem:

Definition 1 ([8]). The BV2 satisfiability problem is to decide
satisfiability of a given closed quantified bit-vector formula
with all scalars encoded in binary.

Similarly to Kovásznai et al. [8], we use an indexing op-
eration, which is a special case of the extraction operation
that produces only a single bit. In particular, for a term
t[n] and a number 0 ≤ i < n, the indexing operation t[n][i]
is defined as extract(t[n], i, i). We assume that bits of bit-
vectors are indexed from the least significant. For example,

given a bit-vector variable x[6] = x5x4x3x2x1x0, the value of
x[6][1] refers to x1. In the following, we use a more general
version of the indexing operation, in which the index can
be an arbitrary bit-vector term, not only a fixed scalar. This
operation can be defined using the indexing operation and
the bit-shift operation with only a linear increase in the
size of the term:

t[n][s[n]] df≡ (t[n] � s[n])[0].
3. Alternation complexity

We assume a basic familiarity with an alternating Turing
machine (atm) introduced by Chandra, Kozen, and Stock-
meyer [9], and basic concepts from the complexity theory,
which can be found for example in Kozen [10]. We recall
that each state of an atm is either existential or universal.
Existential states behave like states of a non-deterministic
Turing machine: a run passing through an existential state
continues with one of the possible successors. In contrast
to this, a run entering a universal state forks and contin-
ues into all possible successors. Hence, runs of an atm are
trees. Such a run is accepting if each branch of the run
ends in an accepting state.

This section recalls some complexity classes related to
alternating Turing machines. Computations in such com-
plexity classes are bounded not only by time and memory,
but also by the number of alternations between existen-
tial and universal states during the computation. Although
bounding both time and memory is useful in some ap-
plications, in this paper we need only complexity classes
related to atms that are bounded in time and the number
of alternations. Therefore, the following definition intro-
duces a family of complexity classes parameterized by the
number of steps and alternations used by corresponding
atms.

Definition 2. Let t, g : N → N be functions such that
g(n) ≥ 1. We define the complexity class ATIME(t, g) as
the class of all problems A for which there is an alter-
nating Turing machine that decides A and, for each input
of length n, it needs at most t(n) steps and g(n) − 1
alternations along every branch of every run. If T and
G are classes of functions, let ATIME(T , G) =⋃

t∈T ,g∈G ATIME(t, g).

Chandra et al. have observed several relationships be-
tween classical complexity classes related to time and
memory and the complexity classes defined by atms [9].
We recall relationships between alternating complexity
classes and the classes NEXPTIME and EXPSPACE, which
are important for this paper. It can easily be seen that
the class NEXPTIME corresponds to all problems solv-
able by an alternating Turing machine that starts in
an existential state and can use exponential time and
no alternations: this yields an inclusion NEXPTIME ⊆
ATIME(2O(n), 1). On the other hand, results of Chandra et
al. imply that EXPSPACE is precisely the complexity class
ATIME(2nO(1)

, 2nO(1)
) of problems solvable in exponential

time and with exponential number of alternations. An in-
teresting class that lies in between those two complexity

Download English Version:

https://daneshyari.com/en/article/6874184

Download Persian Version:

https://daneshyari.com/article/6874184

Daneshyari.com

https://daneshyari.com/en/article/6874184
https://daneshyari.com/article/6874184
https://daneshyari.com

