
Information Processing Letters 135 (2018) 62–67

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Cliques enumeration and tree-like resolution proofs

Massimo Lauria

Dipartimento di Scienze Statistiche – Sapienza Università di Roma, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 November 2017
Received in revised form 20 February 2018
Accepted 1 March 2018
Available online 6 March 2018
Communicated by Marcin Pilipczuk

Keywords:
Theory of computation
Resolution
Clique
Decision tree

We show the close connection between the enumeration of cliques in a k-clique free graph 
G , the running time of DPLL-style algorithms for k-clique problem, and the length of tree-
like resolution refutations for formula Clique(G, k), which claims that G has a k-clique. The 
length of any such tree-like refutation is within a “fixed parameter tractable” factor from 
the number of cliques in the graph. We then proceed to drastically simplify the proofs of 
the lower bounds for the length of tree-like resolution refutations of Clique(G, k) shown in 
Beyersdorff et at. 2013, Lauria et al. 2017, which now reduce to a simple estimate of said 
quantity.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The k-clique problem asks whether a graph has a set 
of k pairwise connected vertices, i.e., a k-clique. Being one 
of the standard NP-complete problems it seems very un-
likely that it has an efficient algorithm, even in approxima-
tion [26,24]. The brute force approach to solve the problem 
on a graph of n vertices is to check all of the ≈ nk sets 
of k vertices. Even more sophisticated algorithms (for ex-
ample [38]) still run in time n�(k) in the worst case. Is 
this the best we can hope for? If one believes the Ex-
ponential Time Hypothesis we cannot even get down to 
no(k) [25,29]. The problem is so difficult that we would 
like to prove its hardness without using unproved hypothe-
ses. Unfortunately we cannot do that unless we restrict 
the computational model. For example we know that cir-
cuits that solve k-clique must have size n�(k) if they are 
restricted to be either of constant depth [36] or with-
out negation gates [35]. These results hold even if we are 
satisfied with solving k-clique only asymptotically almost 
surely in the Erdős–Renyi model, where the edges of the 

E-mail address: massimo .lauria @uniroma1.it.

graph are picked (independently) at random according to 
the appropriate density.

In this paper we focus on decision trees and DPLL-style 
algorithms [16,15] for the k-clique problem, namely al-
gorithms that explore the space of solutions by guessing 
possible members for the k-clique. In case a choice hap-
pens not to be fruitful, the algorithm backtracks and tries 
other possibilities. The execution of a DPLL-style algorithm 
is represented by a decision tree, therefore identify the two 
concepts.

Given a graph G with no k-cliques, we can build a 
propositional formula Clique(G, k) that falsely claims that 
G has a clique of size k. A correct algorithm that searches 
for a k-clique in G must fail, and its trace be an efficiently 
verifiable proof that Clique(G, k) is unsatisfiable. When this 
algorithm is simple enough, as in the case of decision 
trees, the proof can be written down in a simple language 
as well. If such language does not allow for short proofs 
of unsatisfiability of Clique(G, k), the running time of the 
algorithm must be long too. Decisions trees produce, on 
failure, tree-like resolution proofs of unsatisfiability of for-
mula Clique(G, k), for which we can prove strong lower 
bounds. By studying how the proof is written down, we 
can ignore how the algorithm finds it. A lot of those details 
can be abstracted away up to the point that we can see the 

https://doi.org/10.1016/j.ipl.2018.03.001
0020-0190/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.ipl.2018.03.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:massimo.lauria@uniroma1.it
https://doi.org/10.1016/j.ipl.2018.03.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2018.03.001&domain=pdf


M. Lauria / Information Processing Letters 135 (2018) 62–67 63

proof as the result of a non-deterministic, i.e., “very lucky”, 
proof search. Concretely, it means that a lower bound for 
the length of tree-like resolution proofs applies to all deci-
sion trees, regardless of how smart their decision strategy 
is.

The field of proof complexity [14,6,37] studies the length 
of proofs of propositional unsatisfiability. The languages in 
which such proofs are written down are called proof sys-
tems. The more general the proof system, more general is 
the class of algorithms that the system captures. Resolution 
is definitely the most famous and it is at the core of state-
of-the-art SAT algorithms [4,30,31]. The first proof length 
lower bound for resolution was proven in [23], followed 
by more general lower bound techniques [27,8]. In practi-
cal SAT solving memory is a resource as precious as time, 
hence [19,1] developed a notion of proof space that is sup-
posed to model memory usage. Another important proof 
complexity parameter of resolution proofs is the “width”, 
i.e., the size of each proof line. Estimating the required 
width of a resolution proof is a proxy to estimate the 
required length [8] or the required space [3,21]. The corre-
spondence between width and space is not very tight [33], 
which leads to study resolution space directly, using var-
ious pebbling games to model memory allocation. While 
it is hard to know how much memory is needed to win 
these games in general [22,13], it is possible to use and 
combine well understood cases of these games in order to 
prove resolution space lower bounds and resolution length 
vs space trade-offs [32].

We now go back to the problem of determining the 
resolution proof complexity of Clique(G, k). For k ≈ n, su-
per polynomial lower bounds have been proved using 
the size-width relation [5,8], which is by now a standard 
technique in proof complexity. For k � n the problem is 
still open. Neither the size-width relation nor interpola-
tion [27], which is the other main tool used in literature 
to prove resolution lower bounds, give anything for k � n. 
New techniques may be necessary to solve this problem.

In this paper we focus on the tree-like resolution, which 
is a restricted form of resolution that captures algorithms 
based on decision trees. Tree-like resolution is weaker than 
general resolution [12], but we understand better its proof 
length and space [9,20]. There are three types of graphs for 
which the clique formula is known to require tree-like res-
olution refutations of length n�(k) . In [10] the lower bound 
is proved for the complete (k − 1)-partite graph, as well as 
for Erdős–Renyi random graph with appropriate edge den-
sity. A lower bound of n�(log(n)) holds for Ramsey graphs, 
i.e., graphs of n vertices that have neither a 2 log(n)-clique 
nor a 2 log(n) independent set [28]. In this paper we do 
not improve on these results, but we drastically simplify 
them by showing a connection between the length of tree-
like resolution refutations of Clique(G, k) and the number 
of cliques in G .

The paper is organized as follows. In Section 2 we give 
the necessary definitions and notations. In Section 3 we 
show the close correspondence between the number of 
cliques in a graph and the length of tree-like resolution 
refutations for the clique formulas on that graph. In Sec-
tion 4 we show classes of k-clique free graphs with many 

cliques, hence they need large refutations for the corre-
sponding clique formulas.

2. Preliminaries

In this paper we consider simple undirected loop-less 
graphs G = (V , E). We write �(v) to denote the set of ver-
tices in V that are neighbors of a vertex v ∈ V . For an 
arbitrary set of vertices U ⊆ V we denote as �(U ) the set 
of vertices 

⋂
u∈U �(u), i.e., the common neighbors of U in 

G . A clique of G is a set of vertices so that there is an 
edge between any two of them. We denote as C(G) the set 
of cliques of G . We denote as [m] the set of integers from 
1 to m.

A CNF formula over a set of variables is a conjunction 
of distinct clauses, each of them being the disjunction of 
distinct literals. A literal is either an occurrence of a vari-
able or its negation. D is a subclause of a clause C when D
is a disjunction of literals contained in C . We indicate that 
D is a subclause of C with notation C ⊆ D .

The k-clique formula Clique(G, k) is a CNF formula over 
variables xi,v for every v ∈ V and i ∈ [k], where the 
boolean variable xi,v indicates whether the i-th vertex of 
the clique is v . The formula is the conjunction of clauses∨
v∈V

xi,v ∀i ∈ [k] , (1a)

¬xi,u ∨ ¬x j,v ∀i, j ∈ [k], i �= j,∀u, v ∈ V , {u, v} �∈ E ,

(1b)

¬xi,u ∨ ¬xi,v ∀i ∈ [k],∀u, v ∈ V , u �= v . (1c)

Clauses (1a) are called clique axioms, clauses (1b) are 
called edge axioms, and clauses (1c) are called function-
ality axioms. Clearly Clique(G, k) is satisfiable if and only 
if G contains a clique of k vertices, and this holds even 
without the functionality axioms.

Tree-like resolution and Decision trees. The proofs of unsat-
isfiability of Clique(G, k) formula that we consider in the 
paper are sequences of logical inference steps obtained 
using the resolution rule, an inference rule that derives a 
clause from two clauses, called premises, as follows

A ∨ x B ∨ ¬x

A ∨ B
. (2)

To apply rule (2) the two premises must contain, respec-
tively, the positive and negative literal of some variable x, 
and thus we say that we resolve the two clauses over vari-
ables x. The derived clause is their resolvant, and it is true 
whenever both premises are true.

A tree-like resolution proof of a clause C from some CNF 
formula F is a rooted binary tree, directed from the leaves 
to the root, where each node in the tree is labeled by a 
clause over the variables of F . The clauses labeling the 
nodes in the proof must have the following properties:

• no clause contains both a literal and its negation;
• the clause labeling an internal node is the resolvant of 

the clauses labeling its two immediate predecessors;
• the clause at the root is a subclause of C ;



Download English Version:

https://daneshyari.com/en/article/6874185

Download Persian Version:

https://daneshyari.com/article/6874185

Daneshyari.com

https://daneshyari.com/en/article/6874185
https://daneshyari.com/article/6874185
https://daneshyari.com

