Some improved inequalities related to Vizing's conjecture

Li-Dan Pei, Xiang-Feng Pan*, Fu-Tao Hu
School of Mathematical Sciences, Anhui University, Hefei, Anhui, 230601, PR China

ARTICLE INFO

Article history:

Received 23 April 2016
Received in revised form 21 November 2017
Accepted 3 March 2018
Available online 8 March 2018
Communicated by X . Wu

Keywords:

Domination number
Roman domination number
Cartesian product graph
Vizing's conjecture
Combinatorial problems

Abstract

Let $\gamma(G)$ be the domination number of a simple graph G and $G \square H$ be the Cartesian product of two simple graphs G and H. A function $f: V(G) \rightarrow\{0,1,2\}$ is a Roman dominating function (RDF) if for each vertex $u \in V_{0}, N_{G}(u) \cap V_{2} \neq \emptyset$, where $V_{i}=$ $\{u \in V(G): f(u)=i\}$. The Roman domination number $\gamma_{R}(G)$ is the minimum weight $f(V(G))=\sum_{u \in V(G)} f(u)$ among all RDFs of G. Vizing conjectured in 1963 that $\gamma(G \square H) \geq$ $\gamma(G) \gamma(H)$ for any graphs G and H. To this day, this conjecture remains open. In this paper, we show that for each pair of simple graphs G and $H, \gamma(G \square H) \geq \frac{1}{4} \gamma_{R}(G) \gamma_{R}(H)$. This means that Vizing's conjecture holds for any pair of Roman graphs G and H. Moreover, we prove $\gamma_{R}(G \square H) \geq \gamma(G) \gamma(H)+\frac{1}{2} \min \{\gamma(G), \gamma(H)\}$ if G or H is nonempty, which is a slight improvement of $\gamma_{R}(G \square H) \geq \gamma(G) \gamma(H)$ obtained by Wu in 2013 [22].

(C) 2018 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we refer the readers to [23] for undefined terminology and notation. Let $G=(V, E)$ be an undirected graph without loops, multi-edges and isolated vertices, where $V=V(G)$ is the vertex-set and $E=E(G)$ is the edge-set, which is a subset of $\{x y \mid x y$ is an unordered pair of $V\}$. A graph G is nonempty if $E(G) \neq \emptyset$. Two vertices x and y are adjacent if $x y \in E(G)$. For graphs G and H, the Cartesian product $G \square H$ is a graph with vertex set $V(G \square H)=V(G) \times V(H)$ and two vertices are adjacent if and only if they are equal in one coordinate and adjacent in the other. For a vertex x, let $N_{G}(x)=\{y: x y \in E(G)\}$ be the open neighborhood of x and let $N_{G}[x]=N(x) \cup\{x\}$ be the closed neighborhood of x. For a set $D \subseteq V(G)$, the open neighborhood of D is $N_{G}(D)=\bigcup_{u \in D}\left(N_{G}(u)\right)$ and the closed neighborhood is $N_{G}[D]=N_{G}(D) \cup D$. Let $x \in D$. A vertex $y \in V(G) \backslash D$ is an external private neighbor of x with respect to D if $N_{G}(y) \cap D=\{x\}$. We use $G[D]$ to denote the

[^0]subgraph of G induced by D. A set D of vertices is called independent if no two vertices in D are adjacent.

A set $D \subseteq V(G)$ is a dominating set of G if for any vertex $u \in V(G)-D, N_{G}(u) \cap D \neq \emptyset$. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G. A dominating set is called a $\gamma(G)$-set if its cardinality is $\gamma(G)$.

Motivated by Stewart [18], a new variant of the domination number, the Roman domination number, was introduced by Cockayne et al. [9] in 2004. A function $f: V(G) \rightarrow\{0,1,2\}$ is a Roman dominating function (RDF) if for each vertex $u \in V_{0}, N_{G}(u) \cap V_{2} \neq \emptyset$, where $V_{i}=\{u \in$ $V(G) \mid f(u)=i\}$. The weight of f is given by $f(V(G))=$ $\sum_{u \in V(G)} f(u)$. The Roman domination number $\gamma_{R}(G)$ is the minimum weight among all RDFs f of G. A RDF is a $\gamma_{R}(G)$-function if its weight is $\gamma_{R}(G)$. Note that there exists a 1-1 correspondence between the functions $f: V(G) \rightarrow$ $\{0,1,2\}$ and $\left(V_{0}, V_{1}, V_{2}\right)$. Thus, we write the function as $f=\left(V_{0}, V_{1}, V_{2}\right)$. It is well known that for any graph G, $\gamma(G) \leq \gamma_{R}(G) \leq 2 \gamma(G)$ (as mentioned in [9]). A graph G is called a Roman graph if $\gamma_{R}(G)=2 \gamma(G)$.

This definition of a Roman dominating function was given in [9]. We follow [9] to give another description of Roman dominating functions. A Roman dominating func-
tion is a coloring of the vertices of a graph with the colors $\{0,1,2\}$ such that every vertex colored 0 is adjacent to at least one vertex colored 2. The definition of a Roman dominating function is given implicitly in [17,18]. The idea is that colors 1 and 2 represent either one or two Roman legions stationed at a given location (vertex v). A nearby location (an adjacent vertex u) is considered to be unsecured if no legions are stationed there (i.e. $f(u)=0$). An unsecured location (u) can be secured by sending a legion to u from an adjacent location (v). The Emperor Constantine the Great, in the fourth century A.D., decreed that a legion cannot be sent from a location v if doing so leaves that location unsecured (i.e. if $f(v)=1$). Thus, two legions must be stationed at a location $(f(v)=2)$ before one of the legions can be sent to an adjacent location.

In 1963, Vizing [21] presented the following famous conjecture on the domination in Cartesian product.
Vizing's conjecture For any graphs G and $H, \gamma(G \square H) \geq$ $\gamma(G) \gamma(H)$.

This conjecture has received an increasing amount of attention in recent years. At this time, there are many relevant inequalities related to Vizing's conjecture [1,2,4-6,8, $11,12,15,19,20,22$]. Many of the results related to the conjecture indicate that it holds for specific families of graphs or graphs satisfying a specific condition. One of the most successful approaches to this conjecture involves partitioning the vertex set of a graph G in a particular way. This approach was initiated by Barcalkin and German [2] in 1979, who proved that if $V(G)$ can be partitioned into $\gamma(G)$ sets each of which contains a clique, then G, called the BGgraph in [6], satisfies Vizing's conjecture. Whereafter, Hartnell and Rall [12] in 1995 stated that Vizing's conjecture holds for the class of Type χ graphs. Furthermore, Aharoni and Szabó [1] determined that chordal graphs satisfy Vizing's conjecture. The statement just mentioned, in fact, can be inferred by the result obtained by Brešar and Rall [5], who presented that Vizing's inequality is true for the graphs G with $\gamma_{F}(G)=\gamma(G)$, where $\gamma_{F}(G)$ is the fair domination number of G. Besides, the authors in [5] proved that the graphs G with $\gamma_{F}(G)=\gamma(G)$ present a generalization of the BG-graphs that is different from the class of Type χ graphs. Many well-known families of graphs, such as trees, cycles, the graphs with domination number 2 , and the graphs having a 2-packing of cardinality equal to its domination number, are BG-graphs. Then the next two results are actually corollaries of the result in [2]. Jacobson and Kinch [15] proved $\gamma(G \square T) \geq \gamma(G) \gamma(T)$ where T is a tree. El-Zahar and Pareek [11] derived that the conjecture holds when one of G and H is a cycle. Sun [20], and afterwards Brešar [4] with a new proof, stated that all graphs with domination number 3 satisfy Vizing's conjecture. This is the best contribution at present in terms of domination numbers of factors. In 2000, Clark and Suen [8] proved $\gamma(G \square H) \geq \frac{1}{2} \gamma(G) \gamma(H)$ for any graphs G and H. Motivated by the above inequality, the bound to date for $\gamma(G \square H)$ was improved to $\frac{1}{2} \gamma(G) \gamma(H)+\frac{1}{2} \min \{\gamma(G), \gamma(H)\}$ in 2012 by Suen and Tarr [19]. One of the few Vizing-like inequalities related to Roman domination number due to Wu [22], who presented $\gamma_{R}(G \square H) \geq \gamma(G) \gamma(H)$ for any graphs G and H. Moreover, it is worth mentioning that the paper
[6] surveyed all the contributions above and many other excellent achievements on Vizing's conjecture.

In this paper we obtain some results related to Vizing's conjecture. Section 2 shows a lower bound on the domination number of Cartesian product graphs. Vizing's conjecture is proved for two Roman graphs in this result. A lower bound on the Roman domination number of Cartesian product graphs is presented in Section 3. This inequality is a slight improvement of $\gamma_{R}(G \square H) \geq \gamma(G) \gamma(H)$ which was obtained by Wu in 2013 [22].

2. Lower bound on domination number of Cartesian product graphs

First, we introduce two lemmas which are helpful for Theorem 2.3.

Lemma 2.1 (Cockayne [9]). Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be any $\gamma_{R}(G)$-function. Then
(1) No edge of G joins V_{1} and V_{2}.
(2) V_{2} is a $\gamma\left(G\left[V_{0} \cup V_{2}\right]\right)$-set.

Lemma 2.2 (Cockayne [9]). Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be any $\gamma_{R}(G)$-function, where G is a graph without isolated vertices such that $\left|V_{1}\right|$ is a minimum. Then
(1) V_{1} is independent.
(2) $V_{1} \subseteq N_{G}\left[V_{0}\right]$.

Theorem 2.3. For each pair of simple graphs G and H,

$$
\gamma(G \square H) \geq \frac{1}{4} \gamma_{R}(G) \gamma_{R}(H)
$$

Proof. Suppose that S_{1}, S_{2} are the isolated vertex sets of graphs G and H, respectively. The proofs differ depending on $S_{1}=S_{2}=\emptyset$ and $S_{1} \cup S_{2} \neq \emptyset$. We will treat the two cases separately.
Case 1. $S_{1}=S_{2}=\emptyset$. Namely, both G and H are graphs without isolated vertices.

Let D be a $\gamma(G \square H)$-set of the graph $G \square H$ and $f=$ $\left(B_{0}, B_{1}, B_{2}\right)$ be a $\gamma_{R}(G)$-function with $\left|B_{1}\right|$ minimum, where $B_{1}=\left\{u_{1}, u_{2}, \ldots, u_{n_{1}}\right\}$ and $B_{2}=\left\{u_{n_{1}+1}, u_{n_{1}+2}, \ldots\right.$, $\left.u_{n_{1}+n_{2}}\right\}$. Let $D_{j}=\left(B_{j} \times V(H)\right) \cap D$, where $j=0,1,2$ and $D_{i}^{\prime}=\left(\left\{u_{i}\right\} \times V(H)\right) \cap D$, where $i=1,2, \ldots, n_{1}+n_{2}$. Then

$$
\begin{equation*}
\bigcup_{i=1}^{n_{1}} D_{i}^{\prime}=D_{1} \text { and } \bigcup_{i=n_{1}+1}^{n_{1}+n_{2}} D_{i}^{\prime}=D_{2} \tag{2.1}
\end{equation*}
$$

Denote by P_{i} the projection of D_{i}^{\prime} onto H, that is,
$P_{i}=\left\{v \in V(H) \mid\left(u_{i}, v\right) \in D_{i}^{\prime}\right\}$,
where $i=1,2, \ldots, n_{1}+n_{2}$. For each $i=1,2, \ldots, n_{1}+n_{2}$, $g_{i}=\left(A_{0 i}, A_{1 i}, A_{2 i}\right)$ is a Roman domination function of H with $A_{0 i}=N_{H}\left(P_{i}\right), A_{1 i}=V(H)-N_{H}\left[P_{i}\right]$ and $A_{2 i}=P_{i}$. Therefore,
$\gamma_{R}(H) \leq 2\left|A_{2 i}\right|+\left|A_{1 i}\right|$.

https://daneshyari.com/en/article/6874189

Download Persian Version:
https://daneshyari.com/article/6874189

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: lidanpei@163.com (L.-D. Pei), xfpan@ustc.edu (X.-F. Pan), hufu@mail.ustc.edu.cn (F.-T. Hu).

