Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

An improved upper bound of edge-vertex domination number of a tree

Y.B. Venkatakrishnan*, B. Krishnakumari

Department of Mathematics, SASTRA University, Tanjore, Tamilnadu, India

ARTICLE INFO

Article history: Received 12 July 2016 Received in revised form 22 May 2017 Accepted 31 January 2018 Available online xxxx Communicated by Jinhui Xu

Keywords: Combinatorial problems Total domination Edge-vertex domination Tree

ABSTRACT

An edge $e \in E(G)$ dominates a vertex $v \in V(G)$ if e is incident with v or e is incident with a vertex adjacent to v. An edge-vertex dominating set of a graph G is a set D of edges of G such that every vertex of G is edge-vertex dominated by an edge of D. The edge-vertex domination number of a graph G is the minimum cardinality of an edge-vertex dominating set of G. A subset $D \subset V(G)$ is a total dominating set of G if every vertex of G has a neighbor in D. The total domination number of G is the minimum cardinality of a total dominating set of G. We prove that for every nontrivial tree T of order n, with s support vertices we have $\gamma_{ev}(T) \leq (\gamma_t(T) + s - 1)/2$, and we characterize the trees attaining this upper bound.

total domination, refer [1,2].

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Let G = (V, E) be a simple graph. The open neighborhood of a vertex v of G is the set $N_G(v) = \{u \in V(G): uv \in E(G)\}$ and the set $N_G[v] = N_G(v) \cup \{v\}$ is called its closed neighborhood. The degree of a vertex v, denoted by $d_G(v)$, is the cardinality of its open neighborhood. A vertex of degree one is a leaf and an edge incident with a leaf is called an end edge. The vertex adjacent to a leaf is called a support vertex. We say that a support vertex is strong (weak, respectively) if it is adjacent to at least two leaves (exactly one leaf, respectively). The path on n vertices we denote by P_n . Let T be a tree, and let v be a vertex of T. We say that v is adjacent to a path P_n if there is a neighbor of v, say x, such that one of the components of T - vx is a path P_n containing x as a leaf. (See Fig. 1.)

A subset $D \subseteq V(G)$ is a dominating set of G if every vertex of $V(G) \setminus D$ has a neighbor in D. The domination

* Corresponding author.

number of a graph *G*, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of *G*. A subset $D \subseteq V(G)$ is a total dominating set, abbreviated TDS, of *G* if every ver-

tex of G has a neighbor in D. The total domination number

of a graph G, denoted by $\gamma_t(G)$, is the minimum cardinal-

ity of a total dominating set of G. If D is a TDS of G of

size $\gamma_t(G)$, then we call D a $\gamma_t(G)$ -set. For more results on

incident with v or e is incident with a vertex adjacent

to v. A subset $D \subseteq E(G)$ is an edge-vertex dominating

set, abbreviated EVDS, of a graph G if every vertex of G is

edge-vertex dominated by an edge of D. The edge-vertex

domination number of a graph G, denoted by $\gamma_{ev}(G)$, is

An edge $e \in E(G)$ dominates a vertex $v \in V(G)$ if e is

E-mail addresses: venkatakrish2@maths.sastra.edu

⁽Y.B. Venkatakrishnan), krishnakumari@maths.sastra.edu (B. Krishnakumari).

the minimum cardinality of an edge-vertex dominating set of *G*. If *D* is a EVDS of *G* of size $\gamma_{ev}(G)$, then we call *D* a $\gamma_{ev}(G)$ -set. Edge-vertex domination in graphs was introduced in [3], and was further studied in [4].

Trees with total domination number equal to edgevertex domination number plus one was characterized in [5]. We prove, for all trees of order *n* with *s* support vertices, $\gamma_{ev}(T) \leq (\gamma_t(T) + s - 1)/2$ and characterize trees attaining the bound. The bound obtained improves the upper bound of edge-vertex domination number in terms of total domination number as obtained in [5].

2. Results

Since the one-vertex graph does not have total dominating set and edge-vertex dominating set, in this paper, by a tree we mean only a connected graph with no cycle, and which has at least two vertices.

We begin with the following straightforward observation.

Observation 1. Every support vertex of a graph G is in every TDS of G.

First we show that if *T* is a nontrivial tree of order *n* with *s* support vertices, then $\gamma_{ev}(T)$ is bounded above by $(\gamma_t(T) + s - 1)/2$. For the purpose of characterizing the trees attaining this bound we introduce a family \mathcal{T} of trees $T = T_k$ that can be obtained as follows. Let $T_1 \in \{P_3, P_5\}$. If *k* is a positive integer, then T_{k+1} can be obtained recursively from T_k by one of the following operations. (See Fig. 2.)

- Operation \$\mathcal{O}_1\$: Attach a vertex by joining it to a support vertex of \$T_k\$.
- Operation \$\mathcal{O}_2\$: Attach a path \$P_2\$ by joining one of its vertices to a vertex of \$T_k\$ adjacent to path \$P_2\$.
- Operation \$\mathcal{O}_3\$: Attach a path \$P_4\$ by joining one of its leaves to a leaf adjacent to a weak support of \$T_k\$.

We now prove that for every tree *T* of the family \mathcal{T} , $\gamma_{ev}(T) = (\gamma_t(T) + s - 1)/2$.

Fig. 2. Operations $\mathcal{O}_1, \mathcal{O}_2, \mathcal{O}_3$ performed on P_5 .

Lemma 2. If $T \in \mathcal{T}$, then $\gamma_{ev}(T) = (\gamma_t(T) + s - 1)/2$.

Proof. We use the induction on the number *k* of operations performed to construct the tree *T*. If $T_1 = P_3$, then $\gamma_{ev}(T_1) = 1$ and $\gamma_t(T_1) = 2$ or if $T_1 = P_5$, then $\gamma_{ev}(T_1) = 2$ and $\gamma_t(T_1) = 3$. It can be verified that $\gamma_{ev}(T_1) = (\gamma_t(T_1) + s - 1)/2$ is satisfied. Let $k \ge 2$ be an integer. Assume that the result is true for every tree $T' = T_k$ of the family \mathcal{T} constructed by k - 1 operations. Let s' be the number of support vertices of the tree T'. Let $T = T_{k+1}$ be a tree of the family \mathcal{T} constructed by k operations.

First assume that *T* is obtained from *T'* by operation \mathcal{O}_1 . Let *y* be the vertex joined to a support vertex *x*. Let *z* be a leaf adjacent to *x*. Let *D'* be a $\gamma_{ev}(T')$ -set. Then *x* is dominated by some edge $xz \in D'$. If not so, the leaves of *x* would not be dominated by any edges of *D'*. The edge *xz* dominates *y* in the tree *T*. Thus *D'* is an EVDS of the tree *T*. We have $\gamma_{ev}(T) \leq \gamma_{ev}(T')$. Let *D* be a $\gamma_{ev}(T)$ -set. It is obvious that *D* is an EVDS of the tree *T'*. Thus $\gamma_{ev}(T') \leq \gamma_{ev}(T)$. We get $\gamma_{ev}(T) = \gamma_{ev}(T')$. Let *D'* be a $\gamma_{t}(T')$ -set. By Observation 1, the support vertex $x \in D'$. The vertex *x* dominates *y* in the tree *T'*. Thus *D'* is a TDS of the tree *T*. Thus $\gamma_t(T) \leq \gamma_t(T')$. Let *D* be a $\gamma_t(T')$ -set. It is obvious that *D* is a tDS of the tree *T'*. Thus $\gamma_t(T) \leq \gamma_t(T)$. We get $\gamma_{ev}(T') = \gamma_t(T)$. It is easy to see that s = s'. We now get $\gamma_{ev}(T) = \gamma_{ev}(T') = (\gamma_t(T') + s' - 1)/2 = (\gamma_t(T) + s - 1)/2$.

Assume that T is obtained from T' by operation \mathcal{O}_2 . The vertex to which is attached P_2 we denote by x. Let u_1u_2 mean the attached path. Let u_1 be joined to x. The path P_2 adjacent to x and different from u_1u_2 we denote by v_1v_2 . Let v_1 be adjacent to x. Let D' be a $\gamma_{ev}(T')$ -set. The set $D' \cup \{xu_1\}$ is an EVDS of the tree *T*. Thus $\gamma_{ev}(T) \leq \gamma_{ev}(T)$ $\gamma_{ev}(T')$ + 1. Let *D* be a $\gamma_{ev}(T)$ -set. To dominate the vertices v_2 and u_2 , the edges $xv_1, xu_1 \in D$. It is clear that $D \setminus \{xu_1\}$ is an EVDS of the tree T'. Thus $\gamma_{ev}(T') \leq \gamma_{ev}(T) - 1$. We get $\gamma_{ev}(T) = \gamma_{ev}(T') + 1$. Let D' be a $\gamma_t(T')$ -set. By Observation 1, the support vertex $v_1 \in D'$. To dominate the vertex v_1 , the vertex $x \in D'$. The set $D' \cup \{u_1\}$ is a TDS of the tree *T*. Thus $\gamma_t(T) \leq \gamma_t(T') + 1$. Let *D* be a $\gamma_t(T)$ -set. By Observation 1, the vertices $u_1, v_1 \in D$. To dominate u_1 and v_1 the vertex $x \in D$. The set $D \setminus \{u_1\}$ is a TDS of the tree *T'*. Thus $\gamma_t(T') \leq \gamma_t(T) - 1$. We get $\gamma_t(T') = \gamma_t(T) - 1$. It is clear that s' = s - 1. Thus $\gamma_{ev}(T) = \gamma_{ev}(T') + 1 =$ $((\gamma_t(T') + s' - 1)/2) + 1 = ((\gamma_t(T) - 1 + s - 1 - 1)/2) + 1 =$ $(\gamma_t(T) + s - 1)/2.$

Assume that *T* is obtained from *T'* by operation \mathcal{O}_3 . Let *x* be the leaf to which the path $P_4 = u_1u_2u_3u_4$ is attached. Let u_1 be joined to *x*. It is easy to see that s' = s. Let *D'* be a $\gamma_{ev}(T')$ -set. The set $D' \cup \{u_2u_3\}$ is an EVDS of the tree *T*. Thus $\gamma_{ev}(T) \leq \gamma_{ev}(T') + 1$. Let *D* be a $\gamma_{ev}(T)$ -set. To dominate the vertex u_4 , the edge $u_2u_3 \in D$. The set $D \setminus \{u_2u_3\}$ is an EVDS of the tree *T'*. Thus $\gamma_{ev}(T) \leq \gamma_{ev}(T') + 1$. Let *D* be a $\gamma_t(T)$ -set. By Observation 1, the vertex $u_3 \in D$. To dominate u_3 , the vertex $u_2 \in D$. The set $D \setminus \{u_2, u_3\}$ is a TDS of the tree *T'*. Thus $\gamma_t(T') \leq \gamma_t(T) - 2$. Let *D'* be a $\gamma_t(T')$ -set. The set $D' \cup \{u_2, u_3\}$ is a TDS of the tree *T'*. Thus $\gamma_t(T') = \gamma_t(T) - 2$. Let *D'* be a $\gamma_t(T')$ -set. The set $D' \cup \{u_2, u_3\}$ is a TDS of the tree *T'*. Thus $\gamma_t(T') = \gamma_t(T) - 2$. We now get $\gamma_{ev}(T) = \gamma_{ev}(T') + 1 = ((\gamma_t(T') + s' - 1)/2) + 1 = ((\gamma_t(T) - 2 + s - 1)/2) + 2 = (\gamma_t(T) + s - 1)/2$. Download English Version:

https://daneshyari.com/en/article/6874194

Download Persian Version:

https://daneshyari.com/article/6874194

Daneshyari.com